Part of the Studies in Computational Intelligence book series (SCI, volume 508)


An introduction to the field of neural networks is presented with a brief overview of some major historical developments in the area. Applications for which neural networks have been successfully employed are discussed next. Thereafter, the benefits of realizing neural circuits in actual hardware are highlighted. This is followed by a brief note on the organization of the contents in the book.


Neural Network Radial Basis Function Neural Network Graph Colouring Quadratic Programming Problem Neural Network Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Krogh, A.: What are artificial neural networks? Nat. Biotechnol. 26(2), 195–197 (2008)CrossRefGoogle Scholar
  2. 2.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115–133 (1943)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Hebb, D.O.: The organization of behavior. Wiley, New York (1949)Google Scholar
  4. 4.
    Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Minsky, M.L., Papert, S.: Perceptrons. MIT Press, Oxford (1969)zbMATHGoogle Scholar
  6. 6.
    Pollack, J.B.: No harm intended: Marvin, L. Minsky and Seymour A. Papert. Perceptrons: An Introduction to Computational Geometry, Expanded edition. Cambridge, MA: MIT Press, 1988. p. 292. \({\$}\)12.50 (paper). J. Math. Psychol. 33(3), 358–365 (1989)Google Scholar
  7. 7.
    Widrow, B., Hoff Jr, M.E.: IRE western electric show and convention. Record 4(96–104), (1960)Google Scholar
  8. 8.
    Werbos, P.J.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University, Cambridge (1975)Google Scholar
  9. 9.
    Fukushima, K.: Cognitron: a self-organizing multilayered neural network. Biol. Cybern. 2(3), 121–136 (1975)CrossRefGoogle Scholar
  10. 10.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. MIT Press, Cambridge (1986)Google Scholar
  12. 12.
    Moody, J., Darken, C.J.: Fast learning in networks of locally tuned processing units. Neural Comput. 1(2), 281–294 (1989)CrossRefGoogle Scholar
  13. 13.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Happel, B., Murrey, J.: The design and evolution of modular neural network architectures. Neural Netw. 7(6), 985–1004 (1994)CrossRefGoogle Scholar
  15. 15.
    Manganaro, G., Fortuna, L., Arena, P.: Cellular Neural Networks, 1st edn. Springer, Secaucus (1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  17. 17.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Schalkoff, R.J.: Artificial Neural Networks. McGraw-Hill, New York (1997)Google Scholar
  19. 19.
    Sejnowski, T.J., Goldstein, M.H., Jr., Jenkins, R.E., Yuhas, B.P.: Combining visual and acoustic speech signals with a neural network improves intelligibility. In: Advances in Neural Information Processing Systems, pp. 232–239. Morgan Kaufmann Publishers Inc., San Francisco (1990)Google Scholar
  20. 20.
    Cun, L., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404. Morgan Kaufmann, San Mateo (1990)Google Scholar
  21. 21.
    Leung, M.T., Engeler, W.E., Frank, P.: Fingerprint processing using back propagation neural networks. Proc. Int. Joint Conf. Neural Netw. 1, 15–20 (1990)Google Scholar
  22. 22.
    Gorman, R.P., Sejnowski, T.J.: Analysis of hidden units in a layered network trained to classify sonar targets. Neural Netw. 1(1), 75–89 (1988)CrossRefGoogle Scholar
  23. 23.
    Welch, R.M., Sengupta, S.K., Goroch, A.K., Rabindra, P., Rangaraj, N., Navar, M.S.: Polar cloud and surface classification using AVHRR imagery: An intercomparison of methods. J. Appl. Meteorol. 31(5), 405–420 (1992)CrossRefGoogle Scholar
  24. 24.
    Pomerleau, D.A.: Neural Network Perception for Mobile Robot Guidance. Kluwer, Boston (1993)CrossRefGoogle Scholar
  25. 25.
    Poli, R., Cagnoni, S., Livi, R., Coppini, G., Valli, G.: A neural network expert system for diagnosing and treating hypertension. Computer 24(3), 64–71 (1991)CrossRefGoogle Scholar
  26. 26.
    Fujita, H., Katafuchi, T., Uehara, T., Nishimura, T.: Application of artificial neural network to computer-aided diagnosis of coronary artery disease in myocardial SPECT bull’s-eye images. J. Nucl. Med. 33(2), 272–276 (1992)Google Scholar
  27. 27.
    Shea, P.M., Liu, F.: Operational experience with a neural network in the detection of explosives in checked airline luggage. Proc. Int. Joint Conf. Neural Netw. 2, 175–178 (1990)Google Scholar
  28. 28.
    Tam, K.Y., Kiang, M.Y.: Managerial applications of neural networks: the case of bank failure predictions. Manage. Sci. 38(7), 926–947 (1992)CrossRefzbMATHGoogle Scholar
  29. 29.
    Hutchinson, J.M.: A radial basis function approach to financial time series analysis. Ph.D. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Berkeley (1994)Google Scholar
  30. 30.
    Hao, G., Lai, K.K., Tan, M.: A neural network application in personnel scheduling. Ann. Oper. Res. 128, 65–90 (2004)CrossRefzbMATHGoogle Scholar
  31. 31.
    Wang, W.: An inventory optimization model based on BP neutral network. In: Proceedings of IEEE 2nd International Conference on Software Engineering and Service Science (ICSESS), pp. 415–418 (2011)Google Scholar
  32. 32.
    Haykin, S.: Kalman Filtering and Neural Networks. Wiley., New York (2002)Google Scholar
  33. 33.
    Ahn, C.W., Ramakrishna, R.S., Kang, C.G., Choi, I.C.: Shortest path routing algorithm using hopfield neural network. Electron. Lett. 37(19), 1176–1178 (2001)CrossRefGoogle Scholar
  34. 34.
    Hippert, H.S., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. Power Syst. 16(1), 44–55 (2001)CrossRefGoogle Scholar
  35. 35.
    Dorffner, G.: Neural networks for time series processing. Neural Netw. World 6, 447–468 (1996)Google Scholar
  36. 36.
    Stuart, I., Cha, S.-H., Tappert, C.: A neural network classifier for junk e-mail. In: Marinai, S. Dengel, A. (eds.) Document Analysis Systems—VI. Lecture Notes in Computer Science, vol. 3163, pp. 442–450. Springer,Heidelberg (2004)Google Scholar
  37. 37.
    Mohamed, S., Rubino, G.: A study of real-time packet video quality using random neural networks. IEEE Trans. Circuits Syst. Video Technol. 12(12), 1071–1083 (2002)CrossRefGoogle Scholar
  38. 38.
    Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3), 239–255 (2010)CrossRefGoogle Scholar
  39. 39.
    Denby, B.: Neural networks in high energy physics: a ten year perspective. Comput. Phys. Commun. 119(2–3), 219–231 (1999)CrossRefGoogle Scholar
  40. 40.
    Weeks, M., Freeman, M., Moulds, A., Austin, J.: Developing hardware-based applications using PRESENCE-2. In: Proceedings of Perspectives in Pervasive Computing, pp. 107–114 (2005)Google Scholar
  41. 41.
    Austin, J.: The cellular neural network associative processor, C-NNAP. In: Proceedings of Fifth International Conference on Image Processing and its Applications, pp. 622–626 (1995)Google Scholar
  42. 42.
    Harrison, R.R.: A biologically inspired analog IC for visual collision detection. IEEE Trans. Circuits Syst. I Regul. Pap. 52(11), 2308–2318 (2005)CrossRefGoogle Scholar
  43. 43.
    Liu, J., Brooke, M.: A fully parallel learning neural network chip for real-time control. In: Proceedings of International Joint Conference on Neural Networks (IJCNN’99), Vol. 4, pp. 2323–2328 (1999)Google Scholar
  44. 44.
    Reyneri, L.M., Chiaberge, M., Zocca, L. CINTIA: a neuro-fuzzy real time controller for low power embedded systems. In: Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems, pp. 392–403 (1994)Google Scholar
  45. 45.
    Camalie: Box 2 — an analog audio synthesizer. (2012). Accessed 30 June 2012Google Scholar
  46. 46.
    Kim, D., Kim, H., Kim, H., Han, G., Chung, D.: A SIMD neural network processor for image processing. In Wang, J., Liao, X.-F., Yi, Z. (eds.) Advances in Neural Networks Lecture Notes in Computer Science, vol. 3497, pp. 815–815. Springer, Heidelberg (2005)Google Scholar
  47. 47.
    Small, J.S.: General-purpose electronic analog computing: 1945–1965. IEEE Ann. Hist. Comput. 15(2), 8–18 (1993)CrossRefGoogle Scholar
  48. 48.
    Cowan, G.E.R., Melville, R.C., Tsividis, Y.P.: A VLSI analog computer/digital computer accelerator. IEEE J. Solid State Circ. 41(1), 42–53 (2006)CrossRefGoogle Scholar
  49. 49.
    Holler, M., Tam, S., Castro, H., Benson, R.: An electrically trainable artificial neural network (ETANN) with 10240 ‘floating gate’ synapses. Proc. Int. Joint Conf. Neural Netw. 2, 191–196 (1989)CrossRefGoogle Scholar
  50. 50.
    Dias, F.M., Antunes, A., Mota, A.M.: Artificial neural networks: a review of commercial hardware. Eng. Appl. Artif. Intell. 17(8), 945–952 (2004)CrossRefGoogle Scholar
  51. 51.
    Mumford, M.L., Andes, D.K., Kern, L.L.: The Mod 2 neurocomputer system design. IEEE Trans. Neural Netw. 3(3), 423–433 (1992)CrossRefGoogle Scholar
  52. 52.
    Liu, J., Brooke, M.A., Hirotsu, K.: A CMOS feedforward neural-network chip with on-chip parallel learning for oscillation cancellation. IEEE Trans. Neural Netw. 13(5), 1178–1186 (2002)CrossRefGoogle Scholar
  53. 53.
    Milev, M., Hristov, M.: Analog implementation of ANN with inherent quadratic nonlinearity of the synapses. IEEE Trans. Neural Netw. 14(5), 1187–1200 (2003)CrossRefGoogle Scholar
  54. 54.
    Brown, B., Yu, X., Garverick, S.: Mixed-mode analog VLSI continuous-time recurrent neural network. In: Proceedings of International Conference on Circuits, Signals and Systems, pp. 104–108 (2004)Google Scholar
  55. 55.
    Masa, P., Hoen, K., Wallinga, H.: A high-speed analog neural processor. IEEE Micro 14(3), 40–50 (1994)CrossRefGoogle Scholar
  56. 56.
    Lehmann, T., Bruun, E., Dietrich, C.: Mixed analog/digital matrix-vector multiplier for neural network synapses. Analog Integr. Circ. Sig. Process. 9, 55–63 (1996)CrossRefGoogle Scholar
  57. 57.
    Kosko, B.: Bidirectional associative memories. IEEE Trans. Syst. Man Cybern. B Cybern. 18(1), 49–60 (1988)Google Scholar
  58. 58.
    Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)CrossRefGoogle Scholar
  59. 59.
    Kohring, G.A.: On the Q-state neuron problem in attractor neural networks. Neural Netw. 6(4), 573–581 (1993)CrossRefGoogle Scholar
  60. 60.
    Xu, Z.-B., Hu, G.-Q., Kwong, C.-P.: Asymmetric hopfield-type networks: theory and applications. Neural Netw. 9(3), 483–501 (1996)CrossRefGoogle Scholar
  61. 61.
    Bhardwaj, S., Jayadeva.: Sequential chaotic annealing neural network for cdma multiuser detection. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP’02), vol. 5, pp. 2176–2180 (2002)Google Scholar
  62. 62.
    Wilson, G.V., Pawley, G.S.: On the stability of the travelling salesman problem algorithm of hopfield and tank. Biol. Cybern. 58(1), 63–70 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Rahman, S.A.: A nonlinear synapse neural network and its applications. Ph.D. thesis, Department of Electrical Engineering, Indian Institute of Technology, Delhi (2007)Google Scholar
  64. 64.
    Rahman, S.A., Jayadeva, Dutta Roy, S.C.: Neural network approach to graph colouring. Electron. Lett. 35(14), 1173–1175 (1999)CrossRefGoogle Scholar
  65. 65.
    Jayadeva, Rahman, S.A.: A neural network with O(N) neurons for ranking N numbers in O(1/N) time. IEEE Trans. Circuits Syst. I Regul. Pap. 51(10), 2044–2051 (2004)Google Scholar
  66. 66.
    Collins, D.R., Penz, P.A.: Considerations for neural network hardware implementations. In: Proceedings of IEEE International Symposium on Circuits and Systems, Portland, pp. 834–836 (1989)Google Scholar
  67. 67.
    Smith, K.A.: Neural networks for combinatorial optimization: a review of more than a decade of research. INFORMS J. Comput. 11(1), 15–34 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23(7), 881–886 (2010)CrossRefGoogle Scholar
  69. 69.
    Dinu, A., Cirstea, M.N., Cirstea, S.E.: Direct neural-network hardware-implementation algorithm. IEEE Trans. Industr. Electron. 57(5), 1845–1848 (2010)CrossRefGoogle Scholar
  70. 70.
    Lorrentz, P., Howells, G., McDonald-Maier, K.: An FPGA based adaptive weightless neural network hardware. In: Proceedings of NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Noordwijk, pp. 220–227 (2008)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Electronics EngineeringAligarh Muslim UniversityAligarhIndia

Personalised recommendations