Skip to main content

Applications of Machine Olfaction

  • Chapter
  • First Online:
The Electronic Nose: Artificial Olfaction Technology

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

In recent years, electronic noses (E-nose) have been commonly used in a range of fields such as quality control of foods and beverages, public safety, air protection, and medical applications. A key advance in information and gas sensor technology could improve the diagnostic power of future bio-electronic noses and facilitate global supervision models of disease control and management. This chapter presents a review of E-nose applications in various industries and discusses case studies related to the development of the E-nose system for disease diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Özgür, B. Karlık, An Overview of Metal Oxide Semiconducting Sensors in Electronic Nose Applications, International Burch University, Department of Information Technology

    Google Scholar 

  2. A.D. Wilson et al., Applications and advances in electronic-nose technologies. Sensors 9, 5099–5148 (2009). doi:10.3390/s90705099

    Article  Google Scholar 

  3. P. Russell, Sensory analysis. Milk Ind. Int. 97, 11–12 (1995)

    Google Scholar 

  4. D. Sivalingam, J.B. Balaguru Rayappan, Development of E-nose prototype for raw milk quality discrimination. Milchwissenschaft 67(4), 381 (2012)

    Google Scholar 

  5. S. Ampuero et al., The electronic nose applied to dairy products: A review. Sens. Actuators B 94, 1–12 (2003)

    Article  Google Scholar 

  6. K.M. Horváth, Z.S. Seregely, I. Dalmadi, E. Andrassy, J. Farkas, Estimation of bacteriological spoilage of pork cutlets by electronic nose. Acta Microbiol. Immunol. Hung. 54(2), 179–194 (2007)

    Article  Google Scholar 

  7. M. Ghasemi-Varnamkhasti et al., Meat quality assessment by electronic nose (machine olfaction technology). Sensors 9, 6058–6083 (2009). doi:10.3390/s90806058

    Article  Google Scholar 

  8. H. GholamHosseini, D. Luo, H. Liu, G. Xu, Intelligent processing of E-nose information for fish freshness assessment. 3rd international conference on “intelligent sensors, sensor networks and information”, 2007. ISSNIP 2007

    Google Scholar 

  9. K.-T. Tang et al., Development of a portable electronic nose system for the detection and classification of fruity odours. Sensors 10, 9179–9193 (2010). doi:10.3390/s101009179

    Article  Google Scholar 

  10. M. Mamat et al., An electronic nose for reliable measurement and correct classification of beverages. Sensors 11, 6435–6453 (2011). doi:10.3390/s110606435

    Article  Google Scholar 

  11. V.O. Olunloyo, T.A. Ibidapo, R. R. Dinrifo, Neural network-based electronic nose for cocoa beans quality assessment. Agric. Eng. Int. CIGR J. 13(4) (2011)

    Google Scholar 

  12. F. ČAČIĆ, L. PRIMORAC et al. Application of electronic nose in honey geographical origin characterization. J. Central Eur. Agric. 10(1) (2009)

    Google Scholar 

  13. N. Bhattacharyya, S. Seth, B. Tudu, P. Tamuly, A. Jana, D. Ghosh, R. Bandyopadhyay, M. Bhuyan, Monitoring of black tea fermentation process using electronic nose. J. Food Eng. 80, 1146–1156 (2007)

    Article  Google Scholar 

  14. S. Linehan, On the application of a consumer preference-based method for designing products to wine fermentation monitoring devices. Chem. Eng. Comm. 198:255–272 (2011). Taylor & Francis Group, LLC,ISSN: 0098-6445 print = 1563-5201 online, doi:10.1080/00986445.2010.499833

  15. A. D. Wilson “Future Applications of Electronic-Nose Technologies in Healthcare and Biomedicine, Wide Spectra of Quality Control”, Dr. Isin Akyar (Ed.), ISBN: 978-953-307-683-6, In Tech (2011)

    Google Scholar 

  16. M. Trincavelli, S. Coradeschi, A. Loutfi, B. S¨oderquist, P. Thunberg Member, IEEE, Direct identification of bacteria in blood culture samples using an electronic nose. IEEE Trans. Biomedical Eng. 57(12), 2884–2890 (2010)

    Google Scholar 

  17. S.Y. Lai, O.F. Deffenderfer, W. Hanson, M.P. Phillips, E.R. Thaler, Identification of upper respiratory bacterial pathogens with the electronic nose. Laryngoscope 112, 975–979 (2002)

    Article  Google Scholar 

  18. M. L. Humphreys, R. Orme, N. Sahgal, C. Kendall,N. Magan, N. Stone Electronic nose analysis of bronchoalveolar lavage fluid for the diagnosis of ventilator-associated pneumonia. Intensive Care Society’s (ICS) State of the art meeting, December (2007), London, UK

    Google Scholar 

  19. S. Aathithan, J.C. Plant, A.N. Chaudry, G.L. French, Diagnosis of bacteriuria by detection of volatile organic compounds in urine using an automated headspace analyzer with multiple conducting polymer sensors. J. Clin. Microbiol. 39, 2590–2593 (2001)

    Article  Google Scholar 

  20. A.K. Pavlou, N. Magan, C. McNulty, J. Jones, D. Sharp, J. Brown, A.P. Turner, Use of an electronic nose system for diagnoses of urinary tract infections. Biosens. Bioelectron. 17, 893–899 (2002)

    Article  Google Scholar 

  21. A.K. Pavlou, N. Magan, J.M. Jones, J. Brown, P. Klatser, A.P. Turner, Detection of mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens. Bioelectron. 20, 538–544 (2004)

    Article  Google Scholar 

  22. R. Fend et al., Monitoring haemodialysis using electronic nose and chemometrics. Biosens. Bioelectron. 19(12), 15 (2004)

    Article  Google Scholar 

  23. R. F. Machado, Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med 171: 1286–1291 (2005). doi:10.1164/rccm.200409-1184O on March 4, 2005

    Google Scholar 

  24. R. Blatt, A. Bonarini, E. Calabro, M. Della Torre, M. Matteucci, U. Pastorino, Lung cancer identification by an electronic nose based on an array of MOS sensors. Neural Networks, IJCNN (2007), pp. 1423–1428

    Google Scholar 

  25. D. Guo, D. Zhang, N. Li, L. Zhang, J. Yang, A novel breath analysis system based on electronic olfaction. IEEE Trans. Biomed. Eng. 57(11), 2753–2763 (2010)

    Article  Google Scholar 

  26. Arend Kolk et al., Electronic-nose technology in diagnosis of TB patients using sputum samples. J. Clin. Microbiol. (2010). doi:10.1128/JCM.00569-10

    Google Scholar 

  27. N. Charaklias, H. Raja, M.L. Humphreys, N. Magan, C.A. Kendall, The future of early disease detection: Applications of E-nose technology in otolaryngology. J. Laryngol. Otol. 124(8), 823–827 (2010)

    Article  Google Scholar 

  28. M. T. Momol, M. O. Balaban, F. Korel, A. Odabasia, E. A. Momel, G. Folkes, J. B. Jones, Discrimination of plant pathogenic bacteria using an electronic nose, Online. Plant health Progress, (2004)

    Google Scholar 

  29. A.C. Bastos, N. Magan, Soil volatile fingerprints: Use for discrimination between soil types under different environmental conditions. Sens. Actuators B 125, 556–562 (2007)

    Article  Google Scholar 

  30. Alphus D. Wilson, Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 13, 2295–2348 (2013). doi:10.3390/s130202295

    Article  Google Scholar 

  31. A. Catarina Bastos, N. Magan, Potential of an electronic nose for the early detection and differentiation between Streptomyces in potable water. Sens Actuators B 116, 151–155 (2006)

    Article  Google Scholar 

  32. W. Bourgeois, R.M. Stuetz, Measuring wastewater quality using a sensor array: prospects for real-time monitoring. Water Sci. Tech. 41(12), 107–112 (2000)

    Google Scholar 

  33. S. Zampolli et al., An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens. Actuators B 101, 39–46 (2004)

    Article  Google Scholar 

  34. F.D. Francesco et al., An electronic nose for odour annoyance assessment. Atmos. Environ. 35, 1225–1234 (2001)

    Article  Google Scholar 

  35. K. C. Persaud, P. Wareham, A. M. Pisanelli, Emmanuel scorsone, ‘electronic nose’- new condition monitoring devices for environmental applications. Chem. Senses 30 (suppl 1): i252–i253 (2005)

    Google Scholar 

  36. J.E. Staples, The First Quantitatively Validated Electronic Nose for Environmental Testing of Air, Water, and Soil (ACS National, March, 2000), pp. 26–30

    Google Scholar 

  37. M. Bonnefille et. al. Prospective experiments of E-nose for cosmetic applications: recognition of sweat odours, agro-industrial chemistry laboratory, France

    Google Scholar 

  38. G.W. Watson, D.S. McGuire, Detection of explosives in soil and water with an Electronic Nose (American Chemical Society Meeting, Ontario, California, 1999), pp. 5–7. October

    Google Scholar 

  39. M.C. Burl et al., Mining the detector responses of a conducting polymer composite-based electronic nose. First SIAM Int. Conference on Data Mining, (2000)

    Google Scholar 

  40. M. A. Ryan et. al., Monitoring space shuttle air quality using the jet propulsion laboratory electronic nose. IEEE Sens J 4(3) (2004)

    Google Scholar 

  41. L. Zhu et al., Flavor analysis in a pharmaceutical oral solution formulation using an electronic-nose. J. Pharm. Biomed. Anal. 34, 453–461 (2004)

    Article  Google Scholar 

  42. D.H. Yates, Role of exhaled nitric oxide in asthma. Immunol. Cell Biol. 79(2), 178–190 (2001)

    Article  MathSciNet  Google Scholar 

  43. K. Alving, E. Weitzberg, J.M. Lundberg, Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 6(9), 1368–1370 (1993)

    Google Scholar 

  44. W.Q. Cao, Y.X. Duan, Breath analysis: Potential for clinical diagnosis and exposure assessment. Clin. Chem. 52(5), 800–811 (2006)

    Article  MathSciNet  Google Scholar 

  45. L.J. Dupont, M.G. Demedts, G.M. Verleden, Prospective evaluation of the validity of exhaled nitric oxide for the diagnosis of asthma. Chest 123(3), 751–756 (2003)

    Article  Google Scholar 

  46. www.alphasense.com

  47. http://www.figaro.co.jp/

  48. Department of forensic science, “Breath test operator instructional manual”, (2005)

    Google Scholar 

  49. NBS Special Publication 480–41

    Google Scholar 

  50. H. Moskowitz et al., Police officers’ detection of breath odours from alcohol ingestion. Accid. Anal. Prev. 31, 175–180 (1999)

    Article  Google Scholar 

  51. D. Tinwin, Breath alcohol testers: prevents road accidents. AU J.T. 10(2): 75–80 (2006)

    Google Scholar 

  52. Dr Gambert, Breath analysis with electrochemical sensors, GmBH, Germany. http://www. it-wismar.de, IGAMED-workshop, (2007)

  53. L. Wang, Tailored synthesis and characterization of selective metabolite-detecting nanoprobes for handheld breath analysis (Stony Brook University, December, Dissertation, 2008)

    Google Scholar 

  54. B. Hök, H. Pettersson, A.K. Andersson, S. Haasl, P. Åkerlund, Breath analyzer for alcolocks and screening devices. IEEE Sens. J. 10, 10–15 (2010)

    Article  Google Scholar 

  55. http://www.hwsensor.com (HANWEI Electronics Co., Ltd,)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu K. Patel .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Patel, H.K. (2014). Applications of Machine Olfaction. In: The Electronic Nose: Artificial Olfaction Technology. Biological and Medical Physics, Biomedical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1548-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1548-6_8

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1547-9

  • Online ISBN: 978-81-322-1548-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics