Skip to main content

Nitrogen Regulation and Signalling in Plants

Abstract

Nitrogen (N) is an essentially critical element which is involved in signalling and can affect plant growth and development. The plants have evolved different strategies involving short- and long-ranged signalling pathways to cope with the changes in N regulations in the soil. These pathways work at cell and plant level for coordination of N metabolism, growth, and development in accordance with the external and the internal N status. Currently, identification and characterization of local and systemic signalling has been emphasized, but information about integrating coordination and organization of N response of the plants is still lacking. Tracing out the full N pathway could help us to devise and produce high N-efficient genotypes and increase Nitrogen use efficiency (NUE). In this chapter, we discuss the physiological as well as molecular means to understand the mechanisms involved in local and systemic nitrogen responses and how these responses are coordinated.

Keywords

  • Nitrogen
  • Signal molecule
  • N-metabolic pathway
  • N regulation
  • NUE

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-81-322-1542-4_6
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-81-322-1542-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  • Aguera E, Haba PD, Fontes AG, Maldonando JM (1990) Nitrate and nitrite uptake and reduction by intact sunflower plants. Planta 182:149–154

    CAS  Google Scholar 

  • Avila C, Marquez AJ, Pajeulo P, Cannell ME, Wallsgrove RM, Forde BG (1993) Cloning and sequence analysis of a cDNA for barley ferredoxin-dependent glutamate synthase and molecular analysis of photorespiratory mutants deficient in the enzyme. Planta 189:475–483

    PubMed  CAS  Google Scholar 

  • Bachmann M, Huber JL, Liao PC, Gage DA, Huber SC (1996) The inhibitor protein of phosphorylated nitrate reductase from spinach leaves is a 14-3-3 protein. FEBS Lett 387:127–131

    PubMed  CAS  Google Scholar 

  • Becker TW, Caboche M, Carrayol E, Hirel B (1992) Nucleotide sequence of a tobacco cDNA encoding plastidic glutamine synthetase and light inducibility, organ specificity and diurnal rhythmicity in the expression of the corresponding genes of tobacco and tomato. Plant Mol Biol 19:367–379

    PubMed  CAS  Google Scholar 

  • Bowsher CG, Hucklesby DP, Emes MJ (1989) Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum L. Planta 177:359–366

    CAS  Google Scholar 

  • Caboche M, Rouze P (1990) Nitrate reductase: a target for molecular and cellular studies in higher plants. Trends Genet 6:187–192

    PubMed  CAS  Google Scholar 

  • Cánovas FM, Eliane DG, Ghislaine R, Jorrin HP, Mock J, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    PubMed  Google Scholar 

  • Cerezo M, Flors V, Legaz F, Garcia-Agustin P (2000) Characterization of the low affinity transport system for NO3 uptake by citrus roots. Plant Sci 160:95–104

    PubMed  CAS  Google Scholar 

  • Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127:262–271

    PubMed  CAS  Google Scholar 

  • CFAITC (2008) California Foundation for agriculture in the classroom, Sacramento, CA

    Google Scholar 

  • Chandok MR, Raghuram N, Sopory SK (1997) Deciphering the molecular events downstream of phytochrome photoactivation in nitrate reductase regulation in maize. In: Tewari KK, Singhal GS (eds) Plant molecular biology and biotechnology. Narosa publishing House, London, pp 77–85

    Google Scholar 

  • Chen BM, Wang ZH, Li SX, Wang GX, Song HX, Wang XN (2004) Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci 167:635–643

    CAS  Google Scholar 

  • Chiu CC, Lin CS, Hsia AP, Su RC, Lin HL, Tsay YF (2004) Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol 45:1139–1148

    PubMed  CAS  Google Scholar 

  • Coschigano KT, Oliveira RM, Lim J, Coruzzi GM (1998) Arabidopsis gls mutants and distinct Fd-GOGAT genes: implications for photorespiration and primary nitrogen assimilation. Plant Cell 10:741–752

    PubMed  CAS  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Google Scholar 

  • Crawford NM, Kahn M, Leustek Y, Long S (2000) Nitrogen and sulphur. In: Buchanan R, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. The American Society of Plant Physiology, Waldorf, pp 786–849

    Google Scholar 

  • Cren M, Hirel B (1999) Glutamine synthetase in higher plants: regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol 40:1187–1193

    CAS  Google Scholar 

  • Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH, Pronk JT (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279:9125–9138

    PubMed  CAS  Google Scholar 

  • Dhand R (2000) Nature insight: functional genomics. Nature 405:819–865

    CAS  Google Scholar 

  • Dougall DK (1974) Evidence for the presence of glutamate synthase in extracts of carrot cell cultures. Biochem Biophys Res Commun 58:639–646

    PubMed  CAS  Google Scholar 

  • Dubois F, Terce-Laforgue T, Gonzalez-Moro MB, Estavillo JM, Sangwan R, Gallais A, Hirel B (2003) Glutamate dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiol Biochem 41:565–576

    CAS  Google Scholar 

  • Elmlinger MW, Bolle C, Batschauer A, Qelmuller R, Mohr H (1994) Coaction of blue light and light absorbed by phytochrome in control of glutamine synthetase gene expression in Scots pine (Pinus sylvestris L.) seedlings. Planta 192:189–194

    PubMed  CAS  Google Scholar 

  • Emes MJ, Tobin A (1993) Control of metabolism and development in higher plant plastids. Int Rev Cytol 145:149–216

    CAS  Google Scholar 

  • FAO (2007) Current world fertilizer trends and outlook to 2010/11. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Faure JD, Meyer C, Caboche M (2001) Nitrate assimilation: nitrate and nitrite reductases. In: Morot-Gaudry JF (ed) Nitrogen assimilation by assimilation by plants: physiological, biochemical and molecular aspects. Oxford & IBH Publishing, New Delhi, pp 33–52

    Google Scholar 

  • Fei H, Chaillou S, Hirel B, Polowick P, Mahon JD, Vessey JK (2006) Effects of the overexpression of a soybean cytosolic glutamine synthetase gene (GS15) linked to organ-specific promoters on growth and nitrogen accumulation of pea plants supplied with ammonium. Plant Physiol Biochem 44:543–550

    PubMed  CAS  Google Scholar 

  • Finnermann J, Schjoerring JK (2000) Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction. Plant J 24:171–181

    Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235

    PubMed  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation and signalling. J Exp Bot 58:2339–2358

    PubMed  CAS  Google Scholar 

  • Goto S, Akagawa T, Kojima S, Hayakawa T, Yamaya T (1998) Organization and structure of NADH-dependent glutamate synthase gene from rice plants. Biochim Biophys Acta 1387:298–308

    PubMed  CAS  Google Scholar 

  • Gregerson RG, Miller SS, Twary SN, Gantt JS, Vance CP (1993) Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules. Plant Cell 5:215–226

    PubMed  CAS  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in S. Cerevisiae. Mol Cell Proteomics 1:323–333

    PubMed  CAS  Google Scholar 

  • Gutierrez RA, Gifford ML, Poultney C, Wang R, Shasha DE, Coruzzi GM, Crawford NM (2007) Insights into the genomic nitrate response using genetics and sungear software system. J Exp Bot 58:2359–2367

    PubMed  CAS  Google Scholar 

  • Hakeem KR, Ahmad A, Iqbal M, Gucel S, Ozturk M (2011) Nitrogen efficient rice cultivars can reduce nitrate pollution. Environ Sci Pollut Res 18:1184–1193

    CAS  Google Scholar 

  • Hakeem KR, Chandna R, Ahmad A, Qureshi MI, Iqbal M (2012a) Proteomic analysis for low and high nitrogen responsive proteins in the leaves of rice genotypes grown at three nitrogen levels. Appl Biochem Biotechnol 168(4):34–850

    Google Scholar 

  • Hakeem KR, Chandna R, AhmadA, Iqbal M (2012b) Reactive nitrogen inflows and nitrogen use efficiency in agriculture: an environment perspective In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance 217 of plants in the era of climate change. Springer, Berlin, pp 217–232

    Google Scholar 

  • Hartwell J, Gill A, Wilkins MB, Jenkins GI, Nimmo HG (1999) Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J 20:333–342

    PubMed  CAS  Google Scholar 

  • Hirel B, Lea PJ (2001) Ammonia assimilation. In: Lea PJ, Morat-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, pp 79–99

    Google Scholar 

  • Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105:3–7

    PubMed  CAS  Google Scholar 

  • Ireland RJ, Lea PJ (1999) The enzymes of glutamine, glutamate, asparagines and aspartate metabolism. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 49–109

    Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989

    PubMed  CAS  Google Scholar 

  • Kaiser WM, Weiner H, Huber SC (1999) Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiol Plant 105:385–390

    CAS  Google Scholar 

  • Khamis S, Lamaze T, Lemoine Y, Foyer C (1990) Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation. Relationships between electron transport and carbon assimilation. Plant Physiol 94:1436–1443

    PubMed  CAS  Google Scholar 

  • Kolkman A, Daran-Lapujade P, Fullaondo A, Olsthoorn MMA, Pronk JT, Monique S, Heck AJR (2006) Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2:1–26

    Google Scholar 

  • Krapp A, Ferrario-Mery S, Touraine B (2002) Nitrogen and signalling. In: Foyer CH, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer Academic Publishers, Amsterdam, pp 205–225

    Google Scholar 

  • Kronenberger J, Lepingle A, Caboche M, Vaucheret H (1993) Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol Gen Genet 236:203–208

    PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1995) Kinetics of NO3− influx in spruce. Plant Physiol 109:319–326

    PubMed  CAS  Google Scholar 

  • Lauter FR, Ninnemann O, Bucher M, Riesmeier JW, Frommer WB (1996) Preferential expression of an ammonium transport and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci U S A 93:8139–8144

    PubMed  CAS  Google Scholar 

  • Lea PJ, Miflin BJ (1974) An alternative route for nitrogen assimilation in higher plants. Nature 251:614–616

    PubMed  CAS  Google Scholar 

  • Lea PJ, Robinson SA, Stewart GR (1990) The enzymology and metabolism of glutamine, glutamate and asparagine. In: Miflin BJ, Lea PJ (eds) The biochemistry of plants. Academic, New York, pp 121–159

    Google Scholar 

  • Leleu O, Vuylsteker C (2004) Unusual regulatory nitrate reductase activity in cotyledons of Brassica napus seedlings: enhancement of nitrate reductase activity by ammonium supply. J Exp Bot 55:815–823

    PubMed  CAS  Google Scholar 

  • Li M, Villemur R, Hussey PJ, Silflow CD, Gantt JS, Snustad DP (1993) Differential expression of six glutamine synthetase genes in Zea mays. Plant Mol Biol 23:401–407

    PubMed  CAS  Google Scholar 

  • Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007) Dissection of the AtNRT2.1:AtNRT2.2 inducible high affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    PubMed  CAS  Google Scholar 

  • Lillo C, Appenroth KJ (2001) Light regulation of nitrate reductase in higher plants: which photoreceptors are involved? Plant Biol 3:455–465

    CAS  Google Scholar 

  • Lin B, White JT, Lu W, Xie T, Utleg AG, Yan X, Yi EC, Shannon P, Khrebtukova I, Lange PH, Goodlett DR, Zhou D, Vasicek TJ, Hood L (2005) Evidence for the presence of disease-perturbed networks in prostate cancer cells by genomic and proteomic analyses: a systems approach to disease. Cancer Res 65:3081–3091

    PubMed  CAS  Google Scholar 

  • Lochab S, Pathak RR, Raghuram N (2007) Molecular approaches for enhancement of nitrogen use efficiency in plants. In: Abrol YP, Raghuram N, Sachdev MS (eds) Agricultural nitrogen use and its environmental implications. IK International, New Delhi, pp 327–350

    Google Scholar 

  • Malagoli P, Laine P, Le Deunff E, Rossato L, Ney B, Ourry A (2004) Modeling nitrogen uptake in oilseed rape cv capitol during a growth cycle using influx kinetics of root nitrate transport systems and field experimental data. Plant Physiol 134:388–400

    PubMed  CAS  Google Scholar 

  • Masclaux-Daubresse C, Carrayol E, Valadier MH (2005) The two nitrogen mobilisation- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta 221:580–588

    PubMed  CAS  Google Scholar 

  • Miflin BJ, Habash DJ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in nitrogen utilization of crops. J Exp Bot 53:979–987

    PubMed  CAS  Google Scholar 

  • Migge A, Carrayol E, Hirel B, Lohmann M, Meya G, Becker TW (1998) Regulation of the subunit composition of plastidic glutamine synthetase of the wild type and of the phytochrome deficient aurea mutant of by blue/UV-A or UV-B light. Plant Mol Biol 37:689–700

    PubMed  CAS  Google Scholar 

  • Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007a) Nitrate transport and signalling. J Exp Bot 58:2297–2306

    PubMed  CAS  Google Scholar 

  • Miller AJ, Fan X, Shen Q, Smith SJ (2007b) Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 58:2297–2306

    PubMed  CAS  Google Scholar 

  • Miyazaki J, Juricek M, Angelis K, Schnorr KM, Kleinhofs A, Warner RL (1991) Characterization and sequence of a novel nitrate reductase from barley. Mol Gen Genet 228:329–334

    PubMed  CAS  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Google Scholar 

  • Moorhead G, Douglas P, Cotelle V et al (1999) Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J 18:1–12

    PubMed  CAS  Google Scholar 

  • Ninnemann O, Jauniaux JC, Frommer WB (1994) Identification of a high affinity ammonium transporter from plants. EMBO J 13:3464–3471

    PubMed  CAS  Google Scholar 

  • Nogueira EDM, Olivares FL, Japiassu JC, Vilar CV, Vinagre F, Baldini JI, Hemerly AS (2005) Characterisation of glutamine synthetase genes in sugarcane genotypes with different rates of biological nitrogen fixation. Plant Sci 169:819–832

    Google Scholar 

  • Ogawa K, Soutome R, Hiroyama K, Hagio T, Ida S, Nakagawa H, Komamine A (2000) Co-regulation of nitrate reductase and nitrite reductase in cultured spinach cells. J Plant Physiol 157:299–306

    CAS  Google Scholar 

  • Okamoto M, Vidmar JJ, Glass ADM (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44:304–317

    PubMed  CAS  Google Scholar 

  • Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass ADM (2006) High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140:1036–1046

    PubMed  CAS  Google Scholar 

  • Oliveira IC, Coruzzi GM (1999) Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis. Plant Physiol 121:301–310

    PubMed  CAS  Google Scholar 

  • Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM (2002) Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol 129:1170–1180

    PubMed  CAS  Google Scholar 

  • Ortega JL, Roche D, Sengupta-Gopalan C (1999) Oxidative turnover of soybean root glutamine synthetase: in vitro and in vivo studies. Plant Physiol 119:1483–1495

    PubMed  CAS  Google Scholar 

  • Pahlich E (1996) Remarks concerning the dispute related to the function of plant glutamate dehydrogenase: commentary. Can J Bot 74:512–515

    Google Scholar 

  • Pajuelo P, Pajuelo E, Forde BG, Marquéz AJ (1997) Regulation of the expression of ferredoxin glutamate synthase in barley. Planta 203:517–525

    PubMed  CAS  Google Scholar 

  • Quesada A, Krapp A, Trueman L, Daneil-Vedele F, Fernendez E, Forde B, Caboche M (1997) PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high affinity nitrate transporters of the crnA family. Plant Mol Biol 34:265–274

    PubMed  CAS  Google Scholar 

  • Raghuram N, Sopory SK (1995) Light regulation of NR gene expression: mechanism and signal-response coupling. Physiol Mol Biol Plants 1:103–114

    Google Scholar 

  • Raghuram N, Pathak RR, Sharma P (2006) Signalling and the molecular aspects of N-use efficiency in higher plants. In: Singh RP, Jaiwal PK (eds) Biotechnological approaches to improve nitrogen use efficiency in plants. Studium Press LLC, Houston, pp 19–40

    Google Scholar 

  • Rastogi R, Back E, Schneiderbauer A, Bowsher C, Moffatt G, Rothstein SJ (1993) A 330 bp region of the spinach nitrite reductase gene prompter directs nitrate-inducible tissue-specific expression in transgenic tobacco. Plant J 4:317–326

    CAS  Google Scholar 

  • Redinbaugh MG, Campbell WH (1993) Glutamine synthetase and ferredoxin-dependent glutamate synthase expression in the maize (Zea mays) root primary response to nitrate. Plant Physiol 101:l249–l1255

    Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatoff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate rich patches. Proc Natl Acad Sci U S A 103:19206–19211

    PubMed  CAS  Google Scholar 

  • Richard-Molard C, Krapp A, Brun F, Ney B, Daniel-Vedele F, Chaillou S (2008) Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. J Exp Bot 59:779–791

    PubMed  CAS  Google Scholar 

  • Riedel J, Tischner R, Mack G (2001) The chloroplastic glutamine synthetase (GS2) of tobacco is phosphorylated and associated with 14-3-3 proteins inside the chloroplast. Planta 213:396–401

    PubMed  CAS  Google Scholar 

  • Sakakibara H, Watanabe M, Hase ST, Sugiyama T (1991) Molecular cloning and characterization of complementary DNA encoding ferredoxin dependent glutamate synthase in maize leaf. J Biol Chem 266:2028–2035

    PubMed  CAS  Google Scholar 

  • Sakakibara H, Kawabata S, Hase T, Sugiyama T (1992) Differential effects of nitrate and light on the expression of glutamine synthetases and ferrodoxin-dependent glutamate synthase in maize. Plant Cell Physiol 33:1193–1198

    CAS  Google Scholar 

  • Salon C, Munier-Jolain NG, Duc G, Voisin AS, Grangirard D, Larmure A, Emery RJN, Ney B (2001) Grain legume seed filling in relation to nitrogen acquisition: a review and prospects with particular reference to pea. Agronomie 21:539–552

    Google Scholar 

  • Santi S, Locci G, Pinton R, Cesco S, Varanini Z (1995) Plasma membrane H+-ATPase in maize roots induced for NO3 - uptake. Plant Physiol 109:1277–1283

    PubMed  CAS  Google Scholar 

  • Scarpeci TE, Marro ML, Bortolotti S, Boggio SB, Valle EM (2007) Plant nutritional status modulates glutamine synthetase levels in ripe tomatoes (Solanum lycopersicum cv. Micro-Tom). J Plant Physiol 164:137–145

    PubMed  CAS  Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M (1997) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J 11:671–691

    CAS  Google Scholar 

  • Sechley KA, Yamaya T, Oaks A (1992) Compartmentation of nitrogen assimilation in higher plants. Int Rev Cytol 134:85–163

    CAS  Google Scholar 

  • Sinclair TR, De Witt CT (1976) Analysis of carbon and nitrogen limitations to soybean yield. Agron J 68:319–324

    CAS  Google Scholar 

  • Sivasankar S, Oaks A (1995) Regulation of nitrate reductase during early seedling growth: a role for asparagine and glutamine. Plant Physiol 107:1225–1231

    PubMed  CAS  Google Scholar 

  • Sivasankar S, Rothstein S, Oaks A (1997) Regulation of the accumulation and reduction of nitrate by nitrogen and carbon metabolites in maize seedlings. Plant Physiol 114:583–589

    PubMed  CAS  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    PubMed  CAS  Google Scholar 

  • Sueyoshi K, Kleinhofs A, Warner RL (1995) Expression of NADH-specific and NAD(P)H-bispecific nitrate reductase genes in response to nitrate in barley. Plant Physiol 107:1303–1311

    PubMed  CAS  Google Scholar 

  • Sueyoshi K, Mitsuyama T, Sugimoto T, Kleinhofs A, Warner RL, Oji Y (1999) Effects of inhibitors of signalling components on the expression of genes for nitrate reductase and nitrite reductase in excised barley leaves. Soil Sci Plant Nutr 45:1015–1019

    CAS  Google Scholar 

  • Suzuki A, Knaff DB (2005) Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. Photosynth Res 83:191–217

    PubMed  CAS  Google Scholar 

  • Suzuki A, Rothstein S (1997) Structure and regulation of ferredoxin dependent glutamate synthase from Arabidopsis thaliana: cloning of cDNA, expression in different tissues of wild-type and gltS mutant strains, and light induction. Eur J Biochem 243:708–718

    PubMed  CAS  Google Scholar 

  • Taghavi TS, Babalar M (2007) The effect of nitrate and plant size on nitrate uptake and in vitro nitrate reductase activity in strawberry (Fragaria X ananassa cv. Selva). Sci Horticult 112:393–398

    Google Scholar 

  • Tempest DW, Meers JL, Brown CM (1970) Synthesis of glutamate in Aerobacter aerogenes by an hitherto unknown route. Biochem J 117:405–407

    PubMed  CAS  Google Scholar 

  • Temple SJ, Bagga S, Sengupta-Gopalan C (1998) Down regulation of specific members of the glutamine synthetase gene family in alfalfa by antisense RNA technology. Plant Mol Biol 37:535–547

    PubMed  CAS  Google Scholar 

  • ter Schure EG, van Riel NA, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    PubMed  Google Scholar 

  • Thiellement H, Bharmann N, Damerval C (1999) Proteomics for genetic and physiological studies in plants. Electrophoresis 20:2013–2026

    PubMed  CAS  Google Scholar 

  • Trepp GB, Plank DW, Gantt JS, Vance CP (1999) NADH-glutamate synthase in alfalfa root nodules. Immunocytochemical localization. Plant Physiol 119:829–837

    PubMed  CAS  Google Scholar 

  • Trueman LJ, Onyeocha I, Forde B (1996) Recent advances in molecular biology of a family of eukaryotic high affinity nitrate transporters. Plant Physiol Biochem 34:621–627

    CAS  Google Scholar 

  • Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHLI of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713

    PubMed  CAS  Google Scholar 

  • Unkles S, Hawker K, Grieve C, Campbell E, Montague P, Kinghorn J (1991) crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci U S A 88:204–208

    PubMed  CAS  Google Scholar 

  • Vance CP et al (1994) Primary assimilation of nitrogen in alfalfa nodules: molecular features of the enzymes involved. Plant Sci 101:51–64

    CAS  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker MT, Vaucheret H, Caboche M (1993) Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J 3:315–324

    PubMed  CAS  Google Scholar 

  • Washburn MP, Koller A, Oshiro G, Ulaszek RR, Plouffe D, Deciu C, Winzeler E, Yates JR III (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100:3107–3112

    PubMed  CAS  Google Scholar 

  • Wek RC, Staschke KA, Narasimhan J (2004) Regulation of the yeast general amino acid control pathway in response to nutrient stress. In: Winderickx JG (ed) Nutrient-induced responses in eukaryotic cells. Springer, Berlin, pp 171–199

    Google Scholar 

  • Wolt JD (1994) Soil solutions chemistry. Wiley, New York

    Google Scholar 

  • Woodall J, Havill DC, Pearson J (1996) Developmental changes in glutamine synthetase isoforms in Sambucus nigra and Trientalis europaea. Plant Physiol Biochem 34:697–706

    CAS  Google Scholar 

  • Wray JL (1993) Molecular biology, genetics and regulation of nitrite reductase in higher plants. Plant Physiol 89:607–612

    CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang- Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    PubMed  CAS  Google Scholar 

  • Yamaya T (2003) Biotechnological approaches for modification of nitrogen assimilation in rice. In: Jaiwal PK, Singh RP (eds) Plant genetic engineering, vol 2: Improvement of food crops. SciTech Publishing LLC, Houston, TX, pp 79–88

    Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low nitrogen conditions. Proc Natl Acad Sci U S A 101:7833–7838

    PubMed  CAS  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–440

    PubMed  CAS  Google Scholar 

  • Zozaya-Hinchliffe M, Potenza C, Ortega JL, Sengupta-Gopalan C (2005) Nitrogen and metabolic regulation of the expression of plastidic glutamine synthetase in alfalfa (Medicago sativa). Plant Sci 168:1041–1052

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Rehman Hakeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Hakeem, K.R., Sabir, M., Khan, F., Rehman, R.U. (2014). Nitrogen Regulation and Signalling in Plants. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_6

Download citation