Skip to main content

Senescence: Regulation and Signalling

  • Chapter
  • First Online:
Plant signaling: Understanding the molecular crosstalk

Abstract

Senescence is a multifaceted, genetically regulated programme, in which cascade of physiological and biochemical changes occur which bring about the deprivation of macromolecules and the recycling of their components to different parts of the plant. Senescence culminates in death of the plant organ as it necessitates cell viability and is often reversible until the late stages of development. The environmental stress factors such as drought, water logging, high or low solar radiation, extreme temperatures, ozone and other air pollutants, and excessive soil salinity, besides inadequate mineral nutrition in soil, negatively influence the senescence. These stress factors disturb the endogenously regulated system of the plant tissue which may result in promoting the process of the senescence. Despite the initiation by environmental factors, the process of senescence is coordinated through a common signalling network by endogenous and exogenous signals involving the signalling molecules ethylene, abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aihong L, Wang Y, Tang J, Xue P, Li C, Liu L (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide induced leaf cell death in rice. Plant Physiol 158(1):451–464

    Article  Google Scholar 

  • Ansari MS, Misra N (2007) Miraculous role of salicylic acid in plant and animal system. Am J Plant Physiol 2:51–58

    Article  CAS  Google Scholar 

  • Arrom L, Munné-Bosch S (2012) Hormonal changes during flower development in floral tissues of Lilium. Planta 236(2):343–354. http://dx.doi.org/10.1007/s00425-012-1615-0

    Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45(1):113–122

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  PubMed  CAS  Google Scholar 

  • Canakci S (2008) Effect of salicylic acid on fresh weight change, chlorophyll and protein amounts of radish (Raphanus sativus. L.) seedlings. J Boil Sci 8:431–435

    Article  CAS  Google Scholar 

  • Chang H, Jones M, Banowetz GM, Clark DG (2003) Overproduction of cytokinins in Petunia flowers transformed with PSAG12‑IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol 132:2174–2183

    Article  PubMed  CAS  Google Scholar 

  • Fischer AM (2012) The complex regulation of senescence. Crit Rev Plant Sci 31:124–147

    Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875

    Article  PubMed  CAS  Google Scholar 

  • He J, Xu H, She X, Song X, Zhao W (2005) The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct Plant Biol 32(3):237–247

    Article  CAS  Google Scholar 

  • Hoeberichts FA, van Doorn WG, Vorst O, Hall RD, van Wordragen MF (2007) Sucrose prevents upregulation of senescence-associated genes in carnation petals. J Exp Bot 58(11):2873–2885

    Article  PubMed  CAS  Google Scholar 

  • Hunter DA, Ferranti A, Vernieri P, Reid MS (2004) Role of abscisic acid in perianth senescence of daffodil (Narcissus pseudonarcissus “Dutch master”). Physiol Plant 121:313–321

    Article  PubMed  CAS  Google Scholar 

  • Jones ML, Woodson WR (1999) Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in carnation. Plant Physiol 119:755–764

    Article  PubMed  CAS  Google Scholar 

  • Jones ML, Chaffin GS, Eason JR, Clark DG (2005) Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in Petunia corollas. J Exp Bot 56:2733–2744

    Article  PubMed  CAS  Google Scholar 

  • Kazemi M, Ameri A (2012) Response of vase life carnation cut flowers to salicylic acid, silver nanoparticles, glutamine and essential oil. Asian J Anim Sci 6(3):122–131

    Article  CAS  Google Scholar 

  • Kazemi M, Aran M, Zamani S (2011) Extending the vase life of lisianthus (Eustoma grandiflorum mariachi vc blue) with different preservatives. Am J Plant Physiol 6:167–175

    Article  CAS  Google Scholar 

  • Kumar A, Altabella T, Taylor MA, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130

    Article  Google Scholar 

  • Lee IC, Hong SW, Whang SS, Lim PO, Nam HG, Koo JC (2011) Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant Cell Physiol 52:651–662

    Article  PubMed  CAS  Google Scholar 

  • Lerslerwong L, Ketsa S, van Doorn WG (2009) Protein degradation and peptidase activity during petal senescence in dendrobium cv. Khaosanan. Postharvest Biol Technol 52(1):84–90

    Article  CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  PubMed  CAS  Google Scholar 

  • Lum HK, Butt YKC, Lo SCL (2002) Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide 6(2):205–213

    Article  PubMed  CAS  Google Scholar 

  • Mahdavian K, Kalantari KM, Ghorbanki M (2007) The effect of different concentrations of salicylic acid on protective enzyme activities of pepper (Capsicum annuum. L.) plants. Pak J Biol Sci 10:3162–3165

    Article  PubMed  CAS  Google Scholar 

  • Masclaux-Daubresse C, Carrayol E, Valadier MH (2005) The two nitrogen mobilisation- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta 221:580–588

    Article  PubMed  CAS  Google Scholar 

  • Mba FO, Zhi-Ting X, Hai-Jie Q (2007) Salicylic acid alleviates the cadmium toxicity in Chinese cabbages (Brassica chinensis). Pak J Sci 10:3065–3071

    Article  CAS  Google Scholar 

  • Møller I, Jensen M, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Morris K, Mac Kerness SA, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23(5):677–685

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S (2007) Aging in perennials. Crit Rev Plant Sci 26:123–138

    Article  Google Scholar 

  • Narcin PU, Buyuktuncer ED, Mehmet AT (2005) Programmed cell death in plants. J Cell Mol Biol 4:9–23

    Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59(2):165–176

    Article  PubMed  CAS  Google Scholar 

  • Noodén LD (1988) The phenomena of senescence and aging. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 1–50

    Google Scholar 

  • Noodén LD, Guiamét HH, John I (1997) Senescence mechanisms. Plant Physiol 101:746–753

    Article  Google Scholar 

  • Onozaki T, Ikeda H, Shibata M (2004) Video evaluation of ethylene sensitivity after anthesis in carnation (Dianthus caryophyllus L.) flowers. Sci Hortic 99:187–197

    Article  CAS  Google Scholar 

  • Otegui MS, Noh YS, Martinez DE, Vila Petroff MG, Staehelin LA (2005) Senescence associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41:831–844

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Ranade AM, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plat senescence. J Biosci 25(3):291–299

    Article  PubMed  CAS  Google Scholar 

  • Parrott D, Yang L, Shama L, Fischer AM (2005) Senescence is accelerated, and several proteases are induced by carbon ‘feast’ conditions in barley (Hordeum vulgare L.) leaves. Planta 222:989–1000

    Article  PubMed  CAS  Google Scholar 

  • Parrott DL, McInnerney K, Feller U, Fischer AM (2007) Steam girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. New Phytol 176:56–69

    Article  PubMed  CAS  Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signalling in plants. Antioxid Redox Signal 8:1757–1764

    Article  PubMed  CAS  Google Scholar 

  • Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224:556–568

    Article  PubMed  CAS  Google Scholar 

  • Pruzinska A, Tanner G, Salvain A, Iwona A, Simone M, Thomas M, Ongania KH, Bernhard K, Young YJ, Liljegren SJ, Stefan H (2005) Chlorophyll breakdown in senescent Arabidopsisleaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139(1):52–63

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ (2006) Programmed cell death in floral organs: how and why do flowers die? Ann Bot 97:309–315

    Article  PubMed  CAS  Google Scholar 

  • Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis: modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    Article  CAS  Google Scholar 

  • Schippers JHM, Jing HC, Hille J, Dijkwel PP (2007) Developmental and hormonal control of leaf senescence. In: Gan S (ed) Senescence processes in plants. Blackwell Publishing Ltd, Oxford, pp 145–170

    Chapter  Google Scholar 

  • Shahri W, Tahir I (2011) Flower senescence-strategies and some associated events. Bot Rev 77:152–184

    Article  Google Scholar 

  • Shibuya K (2012) Molecular mechanisms of petal senescence in ornamental plants. J Jpn Soc Hort Sci 81(2):140–149

    Article  CAS  Google Scholar 

  • Swartzberg D, Hanael R, Granot D (2011) Relationship between hexokinase and cytokinin in the regulation of leaf senescence and seed germination. Plant Biol 13:439–444

    Article  PubMed  CAS  Google Scholar 

  • Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Tripathi SK, Tuteja N (2007) Integrated signaling in flower senescence. Plant Signal Behav 6:437–445

    Article  Google Scholar 

  • Trobacher CP (2009) Ethylene and programmed cell death in plants. Botany 87:757–769

    Article  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  PubMed  Google Scholar 

  • van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59(3):453–480

    Article  PubMed  Google Scholar 

  • Vicencio JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo A, Tasdemir E, Morselli E, Ben Younes A, Maiuri MC, Lavandero S, Kroemer G (2008) Senescence, apoptosis or autophagy? When a damaged cell must decide its path–a mini-review. Gerontology 54(2):92–99

    Article  PubMed  Google Scholar 

  • Wang P, Du Y, Li Y, Ren D, Song CP (2010) Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22(9):2981–2998

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Roitsch T (2008) Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biol 10(suppl 1):50–62

    Google Scholar 

  • Wingler A, Masclaux-Daubresse C, Fischer AM (2009) Sugars, senescence, and ageing in plants and heterotrophic organisms. J Exp Bot 60:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Ichimura K, Kanekatsu M, van Doorn WG (2009) Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of ipomoea nil petals. Plant Cell Physiol 50(3):610–625

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inayatullah Tahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Dar, R.A., Tahir, I., Ahmad, S.S. (2014). Senescence: Regulation and Signalling. In: Hakeem, K., Rehman, R., Tahir, I. (eds) Plant signaling: Understanding the molecular crosstalk. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1542-4_13

Download citation

Publish with us

Policies and ethics