Skip to main content

Mechanisms of Chemopreventive Activity of Sulforaphane

  • Conference paper
  • First Online:
Perspectives in Cancer Prevention-Translational Cancer Research

Abstract

d, l-Sulforaphane (SFN) found in cruciferous vegetables is a highly promising anticancer and chemopreventive agent. SFN has been shown to exhibit cytostatic and cytotoxic activities against a number of cancer cell types in vitro and inhibit chemically induced carcinogenesis in rodent models in vivo. SFN also prevents metastasis in mouse models of different cancer types. Cytostatic and cytotoxic activities of SFN have been attributed to several mechanisms including the reactive oxygen species (ROS)-dependent cell cycle arrest and apoptosis. Recent studies discussed in this chapter strongly suggest that 4-hydroxynonenal (HNE), the most abundant end product of ROS-induced lipid peroxidation of ω-6 fatty acids, is a major contributor to the chemopreventive activity of SFN. The chemopreventive activity of SFN, and perhaps its analogs found in cruciferous plants, may be attributed to HNE-induced selective apoptosis in cancer cells and simultaneous protection of neighboring normal cells from carcinogenic insult through the induction of defense mechanisms such as the activation of Nrf2 and Hsf1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asakage M, Tsuno NH, Kitayama J, Tsuchiya T, Yoneyama S, Yamada J, Okaji Y, Kaisaki S, Osada T, Takahashi K, Nagawa H (2006) Sulforaphane induces inhibition of human umbilical vein endothelial cells proliferation by apoptosis. Angiogenesis 9:83–91

    Article  PubMed  CAS  Google Scholar 

  • Awasthi S, Singhal SS, Sharma R, Zimniak P, Awasthi YC (2003a) Transport of glutathione – conjugates and chemotherapeutic drugs by RLIP76 (RalBP1): a novel link between G-protein and tyrosine kinase signaling and drug resistance. Int J Cancer 106:635–646

    Article  PubMed  CAS  Google Scholar 

  • Awasthi YC, Sharma R, Cheng JZ, Yang Y, Sharma A, Singhal SS, Awasthi S (2003b) Role of 4-hydroxynonenal in stress-mediated apoptosis signaling. Mol Aspects Med 24:219–230

    Article  PubMed  CAS  Google Scholar 

  • Awasthi YC, Yang Y, Tiwari NK, Patrick B, Sharma A, Li J, Awasthi S (2004) Regulation of 4-hydroxynonenal-mediated signaling by glutathione S-transferases. Free Radic Biol Med 37(5):607–619

    Article  PubMed  CAS  Google Scholar 

  • Awasthi YC, Ansari GA, Awasthi S (2005) Regulation of 4-hydroxynonenal mediated signaling by glutathione S-transferases. Methods Enzymol 401:379–407

    Article  PubMed  CAS  Google Scholar 

  • Awasthi S, Singhal SS, Awasthi YC, Martin B, Woo JH, Cunningham CC, Frankel AE (2008a) RLIP76 and Cancer. Clin Cancer Res 14(14):4372–4377

    Article  PubMed  CAS  Google Scholar 

  • Awasthi YC, Sharma R, Sharma A, Yadav S, Singhal SS, Chaudhary P, Awasthi S (2008b) Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death. Free Radic Biol Med 45(2):111–118

    Article  PubMed  CAS  Google Scholar 

  • Barcelo S, Gardiner JM, Gescher A, Chipman JK (1996) CYP2E1-mediated mechanism of anti-genotoxicity of the broccoli constituent sulforaphane. Carcinogenesis 17:277–282

    Article  PubMed  CAS  Google Scholar 

  • Barcelo S, Mace K, Pfeifer AM, Chipman JK (1998) Production of DNA strand breaks by N-nitrosodimethylamine and 2-amino-3-methylimidazo[4,5-f]quinoline in THLE cells expressing human CYP isoenzymes and inhibition by sulforaphane. Mutat Res 402:111–120

    Article  PubMed  CAS  Google Scholar 

  • Basten GP, Bao Y, Williamson G (2002) Sulforaphane and its glutathione conjugate but not sulforaphane nitrile induce UDP-glucuronosyl transferase (UGT1A1) and glutathione transferase (GSTA1) in cultured cells. Carcinogenesis 23:1399–1404

    Article  PubMed  CAS  Google Scholar 

  • Bertl E, Bartsch H, Gerhauser C (2006) Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol Cancer Ther 5:575–585

    Article  PubMed  CAS  Google Scholar 

  • Brennan P, Hsu CC, Moullan N, Szeszenia-Dabrowska N, Lissowska J, Zaridze D, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Gemignani F, Chabrier A, Hall J, Hung RJ, Boffetta P, Canzian F (2005) Effect of cruciferous vegetables on lung cancer in patients stratified by genetic status: a Mendelian randomization approach. Lancet 366:1558–1560

    Article  PubMed  Google Scholar 

  • Brooks JD, Paton VG, Vidanes G (2001) Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev 10:949–954

    PubMed  CAS  Google Scholar 

  • Büchler M, Salnikov A, Herr I (2011) Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol Ther 19:188–195

    Article  PubMed  Google Scholar 

  • Caldwell JA (1986) Xenobiotic metabolism: mammalian aspects. ACS Symp Ser Am Chem Soc 299:2–28

    Article  CAS  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95:11715–11720

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary P, Sharma R, Sharma A, Vatasyayan A, Yadav R, Singhal S, Awasthi SS, Awasthi YC (2010) Mechanisms of 4-hydroxy-2-nonenal induced pro and anti apoptotic signaling. Biochemistry 49:6263–6275

    Article  PubMed  CAS  Google Scholar 

  • Cheng JZ, Singhal SS, Saini MK, Singhal J, Piper JT, van Kujik FJGM, Zimniak P, Awasthi YC, Awasthi S (1999) Effects of mGST A4 transfection on 4-hydroxynonenal-mediated apoptosis and differentiation of K562 human erythroleukemia cells. Arch Biochem Biophys 372:29–36

    Article  PubMed  CAS  Google Scholar 

  • Cheng JZ, Sharma R, Yang Y, Singhal SS, Sharma A, Saini MK, Singh SV, Zimniak P, Awasthi S, Awasthi YC (2001) Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of RLIP76 and hGST5.8 is an early adaptive response of cells to heat and oxidative stress. J Biol Chem 276(44):41213–41223

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Singh SV (2005) Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent. Cancer Res 65:2035–2043

    Article  PubMed  CAS  Google Scholar 

  • Choi WY, Choi BT, Lee WH, Choi YH (2008) Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 cells. Biomed Pharmacother 62(9):637–644

    Article  PubMed  CAS  Google Scholar 

  • Chung FL, Conaway CC, Rao CV, Reddy BS (2000) Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21:2287–2291

    Article  PubMed  CAS  Google Scholar 

  • Clarke J, Hsu A, Yu Z, Dashwood R, Ho E (2011) Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Foods Res 55:999–1009

    Article  CAS  Google Scholar 

  • Conaway CC, Yang YM, Chung FL (2002) Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab 3:233–255

    Article  PubMed  CAS  Google Scholar 

  • Dianzani UM (2003) 4-Hydroxynonenal from pathology to physiology. Mol Aspects Med 24:263–272

    Article  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99:11908–11913

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi S, Sharma A, Patrick B, Sharma R, Awasthi YC (2007) Role of HNE and its Metabolites in Signaling. Redox Report 12(1):4–10

    Article  PubMed  Google Scholar 

  • Esterbauer H, Zollner H, Schaur RJ (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Redic Biol Med 11:81–128

    Article  CAS  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94(19):10367–10372

    Article  PubMed  CAS  Google Scholar 

  • Fawzy E, Nehad E (2011) Potential health benefits of sulforaphane: a review of the experimental, clinical and epidemiological evidences and underlying mechanisms. J Med Plants Res 5:473–484

    Google Scholar 

  • Fimognari C, Nusse M, Cesari R, Iori R, Cantelli-Forti G, Hrelia P (2002) Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 23:581–586

    Article  PubMed  CAS  Google Scholar 

  • Fowke JH, Chung FL, Jin F, Qi D, Cai Q, Conaway C, Cheng JR, Shu XO, Gao YT, Zheng W (2003) Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res 63:3980–3986

    PubMed  CAS  Google Scholar 

  • Gamet-Payrastre L (2006) Signaling pathways and intracellular targets of sulforaphane mediating cell cycle arrest and apoptosis. Curr Cancer Drug Targets 6:135–145

    Article  PubMed  CAS  Google Scholar 

  • Gamet-Payrastre L, Lumeau S, Gasc N, Cassar G, Rollin P, Tulliez J (1998) Selective cytostatic and cytotoxic effects of glucosinolates hydrolysis products on human colon cancer cells in vitro. Anticancer Drugs 9:141–148

    Article  PubMed  CAS  Google Scholar 

  • Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, Gasc N, Tulliez J, Terce F (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426–1433

    PubMed  CAS  Google Scholar 

  • Gan N, Wu Y, Brunet C, Chung F, Dai C, Mi L (2010) Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27. J Biol Chem 285:35528–35536

    Article  PubMed  CAS  Google Scholar 

  • Herman-Antosiewicz A, Johnson DE, Singh SV (2006) Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res 66:5828–5835

    Article  PubMed  CAS  Google Scholar 

  • Ho E, Clarke J, Dashwood R (2009) Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139:2393–2396

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Willmore WG, Gu J, Goldberg MA, Bunn HF (1999) Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J Biol Chem 274:9038–9044

    Article  PubMed  CAS  Google Scholar 

  • Jackson SJ, Singletary KW, Venema RC (2006) Sulforaphane suppresses angiogenesis and disrupts endothelial mitotic progression and microtubule polymerization. Vascul Pharmacol 46:77–84

    Article  PubMed  Google Scholar 

  • Jeong WS, Jun M, Kong AN (2006) Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal 8:99–106

    Article  PubMed  CAS  Google Scholar 

  • Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127

    Article  PubMed  CAS  Google Scholar 

  • Kallifatidis G, Rausch V, Baumann B, Apel A, Beckermann B, Groth A, Mattern J, Li Z, Kolb A, Moldenhauer G, Altevogt P, Wirth T, Werner J, Schemmer P, Büchler M, Salnikov A, Herr I (2009) Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 58:949–963

    Article  PubMed  CAS  Google Scholar 

  • Kaminski B, Weigert A, Brüne B, Schumacher M, Wenzel U, Steinhilber D, Stein J, Ulrich S (2011) Sulforaphane potentiates oxaliplatin-induced cell growth inhibition in colorectal cancer cells via induction of different modes of cell death. Cancer Chemother Pharmacol 67:1167–1178

    Article  PubMed  CAS  Google Scholar 

  • Kong A, Yu R, Hebbar V, Chen C, Owuor E, Hu R, Ee R, Mandlekar S (2001) Signal transduction events elicited by cancer prevention compounds. Mutat Res 480–481:231–241

    Article  PubMed  Google Scholar 

  • Maheo K, Morel F, Langouet S, Kramer H, Le Ferrec E, Ketterer B, Guillouzo A (1997) Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res 57:3649–3652

    PubMed  CAS  Google Scholar 

  • Meeran S, Patel S, Tollefsbol T (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 5:e11457

    Article  PubMed  Google Scholar 

  • Moon D, Kang S, Kim K, Kim M, Choi Y, Kim G (2010) Sulforaphane decreases viability and telomerase activity in hepatocellular carcinoma Hep3B cells through the reactive oxygen species-dependent pathway. Cancer Lett 295:260–266

    Article  PubMed  CAS  Google Scholar 

  • Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    Article  PubMed  CAS  Google Scholar 

  • Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH (2006) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apcmin mice. FASEB J 20:506–508

    PubMed  CAS  Google Scholar 

  • Pham NA, Jacobberger JW, Schimmer AD, Cao P, Gronda M, Hedley DW (2004) The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol Cancer Ther 3:1239–1248

    PubMed  CAS  Google Scholar 

  • Pledgie-Tracy A, Sobolewski M, Davidson N (2007) Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Rose P, Huang Q, Ong CN, Whiteman M (2005) Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 209:105–113

    Article  PubMed  CAS  Google Scholar 

  • Scharf G, Prustomersky S, Knasmuller S, Schulte-Hermann R, Huber WW (2003) Enhancement of glutathione and gamma-glutamylcysteine synthetase, the rate limiting enzyme of glutathione synthesis, by chemoprotective plant derived food and beverage components in the human hepatoma cell line HepG2. Nutr Cancer 45:74–83

    Article  PubMed  CAS  Google Scholar 

  • Shan Y, Sun C, Zhao X, Wu K, Cassidy A, Bao Y (2006) Effect of sulforaphane on cell growth, G0/G1 phase cell progression and apoptosis in human bladder cancer T24 cells. Int J Oncol 29:883–888

    PubMed  CAS  Google Scholar 

  • Shan Y, Wu K, Wang W, Wang S, Lin N, Zhao R, Cassidy A, Bao Y (2009) Sulforaphane down-regulates COX-2 expression by activating p38 and inhibiting NF-kappaB-DNA-binding activity in human bladder T24 cells. Int J Oncol 34(4):1129–1134

    PubMed  CAS  Google Scholar 

  • Sharma R, Brown D, Awasthi S, Yang Y, Sharma A, Patrick B, Saini MK, Singh SP, Zimniak P, Singh SV, Awasthi YC (2004) Transfection with 4-hydroxynonenal-metabolizing glutathione S-transferase isozymes leads to phenotypic transformation and immortalization of adherent cells. Eur J Biochem 271:1690–1701

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Sharma R, Chaudhary P, Vatsyayan R, Pearce V, Jeyabal PV, Zimniak P, Awasthi S, Awasthi YC (2008a) 4-Hydroxynonenal induces p53-mediated apoptosis in retinal pigment epithelial cells. Arch Biochem Biophys 480:85–94

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Sharma A, Dwivedi S, Zimniak P, Awasthi S, Awasthi YC (2008b) 4-Hydroxynonenal self limits Fas-mediated DISC independent apoptosis by promoting export of Daxx from nucleus to cytosol and its binding to Fas. Biochemistry 47:143–156

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Sharma A, Chaudhary P, Vatsyayan R, Pearce V, Singh SV, Awasthi S, Awasthi YC (2010) Role of lipid peroxidation in cellular responses to D, L-sulforaphane, a promising cancer chemopreventive agent. Biochemistry 49:3191–3202

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Ellis B, Sharma A (2011) Role of alpha class glutathione transferases in chemoprevention: Human leukemia (HL60) cells overexpression GSTA1and GSTA4 resist sulphorphane and curcumin induced cytotoxicity. Phytother Res 25(4):563–568

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Sharma A, Chaudhary P, Sahu M, Jaiswal S, Awasthi S, Awasthi YC (2012) Role of 4-hydroxynonenal in chemopreventive activities of sulforaphane. Free Radic Biol Med 52(11–12):2177–2185

    Article  PubMed  CAS  Google Scholar 

  • Shen G, Xu C, Chen C, Hebbar V, Kong AN (2006) p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Chemother Pharmacol 57:317–327

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  PubMed  CAS  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  PubMed  CAS  Google Scholar 

  • Singh AV, Xiao D, Lew KL, Dhir R, Singh SV (2004a) Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 25:83–90

    Article  PubMed  CAS  Google Scholar 

  • Singh SV, Herman-Antosiewicz A, Singh AV, Lew KL, Srivastava SK, Kamath R, Brown KD, Zhang L, Baskaran R (2004b) Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J Biol Chem 279:25813–25822

    Article  PubMed  CAS  Google Scholar 

  • Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, Zeng Y, Watkins SC, Johnson CS, Trump DL, Lee YJ, Xiao H, Herman- Antosiewicz A (2005) Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem 280:19911–19924

    Article  PubMed  CAS  Google Scholar 

  • Singhal SS, Awasthi YC, Awasthi S (2006) Regression of melanoma in a murine model by RLIP76 depletion. Cancer Res 66(4):2354–2360

    Article  PubMed  CAS  Google Scholar 

  • Singhal SS, Singhal J, Yadav S, Dwivedi S, Boor PJ, Awasthi YC, Awasthi S (2007) Regression of lung and colon cancer xenografts by depleting or inhibiting RLIP76 (Ral-binding protein 1). Cancer Res 67(9):4382–4389

    Article  PubMed  CAS  Google Scholar 

  • Singhal SS, Singhal J, Yadav S, Sahu M, Awasthi YC, Awasthi S (2009) RLIP76: a target for kidney cancer therapy. Cancer Res 69(10):4244–4251

    Article  PubMed  CAS  Google Scholar 

  • Skupinska K, Misiewicz-Krzeminska I, Stypulkowski R, Lubelska K, Kasprzycka-Guttman T (2009) Sulforaphane and its analogues inhibit CYP1A1 and CYP1A2 activity induced by benzo[a]pyrene. J Biochem Mol Toxicol 23:18–28

    Article  PubMed  CAS  Google Scholar 

  • Talalay P (2000) Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12:5–11

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Zhang Y (2004) Dietary isothiocyanates inhibit the growth of human bladder carcinoma cells. J Nutr 134:2004–2010

    PubMed  CAS  Google Scholar 

  • Thejass P, Kuttan G (2006) Antimetastatic activity of sulforaphane. Life Sci 78:3043–3050

    Article  PubMed  CAS  Google Scholar 

  • Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2- regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–5203

    PubMed  CAS  Google Scholar 

  • Vatsyayan R, Chaudhary P, Sharma A, Sharma R, Rao Lelsani PC, Awasthi S, Awasthi YC (2011) Role of 4-hydroxynonenal in epidermal growth factor receptor-mediated signaling in retinal pigment epithelial cells. Exp Eye Res 92(2):147–154

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Ernst I, Iori R, Desel C, Rimbach G (2010) Sulforaphane but not ascorbigen, indole-3-carbinole and ascorbic acid activates the transcription factor Nrf2 and induces phase-2 and antioxidant enzymes in human keratinocytes in culture. Exp Dermatol 19:137–144

    Article  PubMed  CAS  Google Scholar 

  • Wang LI, Giovannucci EL, Hunter D, Neuberg D, Su L, Christiani DC (2004) Dietary intake of cruciferous vegetables, glutathione S-transferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes Control 15:977–985

    Article  PubMed  Google Scholar 

  • Xu K, Thornalley PJ (2000) Studies on the mechanism of the inhibition of human leukaemia cell growth by dietary isothiocyanates and their cysteine adducts in vitro. Biochem Pharmacol 60:221–231

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Cheng JZ, Singhal SS, Saini M, Pandya U, Awasthi S, Awasthi YC (2001) Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J Biol Chem 276(22):19220–19230

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Sharma R, Zimniak P, Awasthi YC (2002) Role of alpha class glutathione S-transferases as antioxidant enzymes in rodent tissues. Toxicol Appl Pharmacol 182:105–115

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Sharma A, Sharma R, Patrick B, Singhal SS, Zimniak P, Awasthi S, Awasthi YC (2003) Cells preconditioned with mild, transient UVA irradiation acquire resistance to oxidative stress and UVA-induced apoptosis: role of 4-hydroxynonenal in UVA-mediated signaling for apoptosis. J Biol Chem 278(42):41380–41388

    Article  PubMed  CAS  Google Scholar 

  • Yao H, Wang H, Zhang Z, Jiang BH, Luo J, Shi X (2008) Sulforaphane inhibited expression of hypoxia-inducible factor-1alpha in human tongue squamous cancer cells and prostate cancer cells. Int J Cancer 15:123(6):1255–1261

    Google Scholar 

  • Yoxall V, Kentish P, Coldham N, Kuhnert N, Sauer MJ, Ioannides C (2005) Modulation of hepatic cytochromes P450 and phase II enzymes by dietary doses of sulforaphane in rats: implications for its chemopreventive activity. Int J Cancer 117:356–362

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2000) Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis 21:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Forman HJ (2009) Signaling pathways involved in Phase II gene induction by alpha beta unsaturated aldehydes. Toxicol Ind Health 4–5:269–278

    Article  Google Scholar 

  • Zhang Y, Marshall JR, Ambrosone CB (2004) Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk. Nutr Cancer 50:206–213

    Article  PubMed  Google Scholar 

  • Zhang Y, Munday R, Jobson HE, Munday CM, Lister C, Wilson P, Fahey JW, Mhawech-Fauceglia P (2006) Induction of GST and NQO1 in cultured bladder cells and in the urinary bladders of rats by an extract of broccoli (Brassica oleracea italica) sprouts. J Agric Food Chem 54:9370–9376

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported in part by NEIHS grants ES 012171 and Patricia Rogers Joslin Foundation for Pancreatic Cancer Research, Arlington, Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh C. Awasthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Awasthi, Y.C., Jaiswal, S., Sahu, M., Sharma, A., Sharma, R. (2014). Mechanisms of Chemopreventive Activity of Sulforaphane. In: R. Sudhakaran, P. (eds) Perspectives in Cancer Prevention-Translational Cancer Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1533-2_8

Download citation

Publish with us

Policies and ethics