Abstract
Rigorous efforts in searching for novel chemosensitizers and unraveling their molecular mechanism have identified curcumin as one of the promising candidates. Our earlier report has shown that cervical cancer cells can be sensitized by curcumin to paclitaxel-induced apoptosis through down-regulation of NF-κB and Akt. The present study is an attempt to decipher the signaling pathways regulating the synergism of paclitaxel and curcumin and to determine whether the synergism exists in vivo. The study has clearly proved that Akt and NF-κB function successively in the sequence of paclitaxel-induced signaling events where Akt is up-stream of NF-κB. Inactivation of NF-κB did not affect the activation of Akt and survivin, while that of Akt significantly inhibited NF-κB and completely inhibited up-regulation of survivin. Up-regulation of cyclin-D1, COX-2, XIAP, and c-IAP1 and phosphorylation of MAPKs were completely inhibited on inactivation of NF-κB assigning a key regulatory role to NF-κB in the synergism. While up-regulation of survivin by paclitaxel is regulated by Akt, independent of NF-κB, inactivation of neither Akt nor NF-κB produced any change in Bcl-2 level suggesting a distinct pathway for its action. Mouse cervical multistage squamous cell carcinoma model using 3-methylcholanthrene and a xenograft model of human cervical cancer in NOD-SCID mice using HeLa cells were used to evaluate the synergism in vivo. The results suggest that curcumin augments the antitumor action of paclitaxel by down-regulating the activation and down-stream signaling of antiapoptotic factors and survival signals such as NF-κB, Akt, and MAPKs.
Keywords
- Paclitaxel
- Curcumin
- NF-κB
- Akt
- MAPKs
- Synergism
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6(3):203–208
Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, Price JE (2005) Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11:7490–7498
Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB (2006) Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 69:195–206
Ahn KS, Sethi G, Aggarwal BB (2007) Nuclear factor-kappa B: from clone to clinic. Curr Mol Med 7(7):619–637
Amato SF, Swart JM, Berg M, Wanebo HJ, Mehta SR, Chiles TC (1998) Transient stimulation of the c-Jun-NH2-Terminal Kinase/Activator Protein 1 pathway and inhibition of extracellular signal-regulated kinase are early effects in paclitaxel-mediated apoptosis in human B lymphoblasts. Cancer Res 58:241–247
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818
Anto RJ, Maliekal TT, Karunagaran D (2000) L-929 cells harboring ectopically expressed RelA resist curcumin-induced apoptosis. J Biol Chem 275:15601–15604
Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB (2002) Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23(1):143–150
Anto RJ, Venkatraman M, Karunagaran D (2003) Inhibition of NF-κB sensitizes A431Cells to EGF-induced apoptosis whereas its activation by ectopic expression of RelA confers resistance. J Biol Chem 278:25490–25498
Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP (2001) Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20:147–155
Banerjee S, Bueso-Ramos C, Aggarwal BB (2002) Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res 62(17):4945–4954
Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D, Anto RJ (2005) Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280(8):6301–6308
Bentires-Alj M, Barbu V, Fillet M, Chariot A, Relic B, Jacobs N, Gielen J, Merville MP, Bours V (2003) NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 22(1):90–97
Bradley G, Ling V (1994) P-glycoprotein, multidrug resistance and tumor progression. Cancer Metastasis Rev 13(2):223–233
Catz SD, Johnson JL (2003) BCL-2 in prostate cancer: a mini review. Apoptosis 8:29–37
Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410(6824):37–40
Chaturvedi MM, Mukhopadhyay A, Aggarwal BB (2000) Assay for redox-sensitive transcription factor. Methods Enzymol 319:585–602
Chen YR, Tan TH (1998) Inhibition of the c-Jun N-terminal kinase (JNK) signalling pathway by curcumin. Oncogene 17:173–178
Chen F, Demers LM, Vallyathan V, Ding M, Lu Y, Castranova V, Shi X (1999) Vanadate induction of NF-kappaB involves IkappaB kinase beta and SAPK/ERK kinase 1 in macrophages. J Biol Chem 274:20307–20312
Chhabra SK, Kaur S, Rao AR (1995) Modulatory influence of the oral contraceptive pill, Ovral, on 3-methylcholanthrene-induced carcinogenesis in the uterus of mouse. Oncology 52(1):32–34
Chio CC, Chang YH, Hsu YW, Chi KH, Lin WW (2004) PKA-dependent activation of PKC, p38 MAPK and IKK in macrophage: implication in the induction of inducible nitric oxide synthase and interleukin-6 by dibutyryl cAMP. Cell Signal 16:565–575
Choi BH, Kim CG, Lim Y, Shin SY, Lee YH (2008) Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NF kappa B pathway. Cancer Lett 259(1):111–118
Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Bio 71:479–500
Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T (2004) NF-{kappa}Band AP-1 connection: mechanism of NF-{kappa}B-dependent regulation of AP-1 activity. Mol Cell Biol 24:7806–7819
Gagnon V, Themsche CV, Turner S, Leblanc V, Asselin E (2008) Akt and XIAP regulate the sensitivity of human uterine cancer cells to cisplatin, doxorubicin and taxol. Apoptosis 13:259–271
Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6(3):928–939
Gupta SC, Sundaram C, Reuter S, Aggarwal BB (2010) Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta 1799:775–787. doi:10.1016/j.bbagrm.2010.05.004
Hahm ER, Cheon G, Lee J, Kim B, Park C, Yang CH (2002) New and known symmetrical curcumin derivatives inhibit the formation of Fos-Jun-DNA complex. Cancer Lett 184:89–96
Hokeness K, Qiu LH, Vezeridis M, Yan BF, Mehta S, Wan YS (2005) IFN-gamma enhances paclitaxel-induced apoptosis that is modulated by activation of caspases 8 and 3 with a concomitant down regulation of the AKT survival pathway in cultured human keratinocytes. Oncol Rep 13(5):965–969
Huang Y, Fan W (2002) IkappaB kinase activation is involved in regulation of paclitaxel-induced apoptosis in human tumor cell lines. Mol Pharmacol 61:105–113
Huang Y, Johnson KR, Norris JS, Fan W (2000) Nuclear factor-kappaB/IkappaB signaling pathway may contribute to the mediation of paclitaxel-induced apoptosis in solid tumor cells. Cancer Res 60:4426–4432
Hussain SP, Rao AR (1991) Chemopreventive action of mace (Myristica fragrans, Houtt) on methylcholanthrene-induced carcinogenesis in the uterine cervix in mice. Cancer Lett 56(3):231–234
Inoue M, Matsumoto S, Saito H, Tsujitani S, Ikeguchi M (2008) Intraperitoneal administration of a small interfering RNA targeting nuclear factor-kappa B with paclitaxel successfully prolongs the survival of xenograft model mice with peritoneal metastasis of gastric cancer. Int J Cancer 123(11):2696–2701
Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9(11):601–604
Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310
Kuo HC, Lee HJ, Hu CC, Shun HI, Tseng TH (2006) Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells. Toxicol Appl Pharmacol 210(1–2):55–62
Kuttan R, Bhanumathy P, Nirmala K, George MC (1985) Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett 29(2):197–202
Lamb JA, Ventura JJ, Hess P, Flavell RA, Davis RJ (2003) JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell 11:1479–1489
Lee LF, Li G, Templeton DJ, Ting JP (1998) Paclitaxel (Taxol)-induced gene expression and cell death are both mediated by the activation of c-Jun NH2-terminal kinase (JNK/SAPK). J Biol Chem 273:28253–28260
Lee SW, Han SI, Kim HH, Lee ZH (2002) TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB. J Biochem Mol Biol 35:371–376
Li JJ, Westergaard C, Ghosh P, Colburn NH (1997) Inhibitors of both nuclear factor kappaB and activator protein-1 activation block the neoplastic transformation response. Cancer Res 57:3569–3576
Li JJ, Rhim JS, Schlegel R, Vousden KH, Colburn NH (1998) Expression of dominant negative Jun inhibits elevated AP-1 and NF-kappaB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes. Oncogene 16:2711–2721
Li L, Ahmed B, Mehta K, Kurzrock R (2007) Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Therap 6(4):1276–1282
Lieu CH, Chang YN, Lai YK (1997) Dual cytotoxic mechanisms of submicromolar taxol on human leukemia HL-60 cells. Biochem Pharmacol 53:1587–1596
Liu ZG, Hsu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87:565–576
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408
Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, Kawagoe J, Yada-Hashimoto N, Takahashi K, Seino-Noda H, Sakata M, Motoyama T, Kurachi H, Testa JR, Tasaka K, Murata Y (2004) Inhibition of inhibitor of nuclear factor-kappaB phosphorylation increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Clin Cancer Res 10:7645–7654
Murphy ED (1961) Carcinogenesis of the uterine cervix in mice: effect of diethylstilbestrol after limited application of 3-methylcholanthrene. J Natl Cancer Inst 27:611–653
Narayanan NK, Nargi D, Randolph C, Narayanan BA (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 125(1):1–8
Oh SY, Song JH, Gil JE, Kim JH, Yeom YI, Moon EY (2006) ERK activation bythymosin-beta-4 (TB4) over expression induces paclitaxel-resistance. Exp Cell Res 312:1651–1657
Seidman R, Gitelman I, Sagi O, Horwitz SB, Wolfson M (2001) The role of ERK ½ and p38 MAP-kinase pathways in Taxol-induced apoptosis in human ovarian carcinoma cells. Exp Cell Res 268:84–92
Stein B, Baldwin AS Jr, Ballard DW, Greene WC, Angel P, Herrlich P (1993) Cross coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J 12:3879–3891
Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331
Yagi H, Yotsumoto F, Sonoda K, Kuroki M, Mekada E, Miyamoto S (2009) Synergistic anti-tumor effect of paclitaxel with CRM197, an inhibitor of HB-EGF, in ovarian cancer. Int J Cancer 124(6):1429–1439
Yu C, Wang S, Dent P, Grant S (2001) Sequence-dependent potentiation of paclitaxel mediated apoptosis in human leukemia cells by inhibitors of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathway. Mol Pharmacol 60:143–154
Zhao P, Meng Q, Liu LZ, You YP, Liu N, Jiang BH (2010) Regulation of survivin byPI3K/Akt/p70S6K1 pathway. Biochem Biophys Res Commun 395:219–224
Zhou G, Kuo MT (1997) NF-kappaB-mediated induction of mdr1b expression by insulin in rat hepatoma cells. J Biol Chem 272(24):15174–15183
Zhu N, Gu L, Li F, Zhou M (2008) Inhibition of the Akt/survivin pathway synergizes the antileukemia effect of nutlin-3 in acute lymphoblastic leukemia cells. Mol Cancer Ther 7:1101–1109
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer India
About this paper
Cite this paper
Sreekanth, C.N. et al. (2014). Curcumin: A Potent Candidate to be Evaluated as a Chemosensitizer in Paclitaxel Chemotherapy Against Cervical Cancer. In: R. Sudhakaran, P. (eds) Perspectives in Cancer Prevention-Translational Cancer Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1533-2_3
Download citation
DOI: https://doi.org/10.1007/978-81-322-1533-2_3
Published:
Publisher Name: Springer, New Delhi
Print ISBN: 978-81-322-1532-5
Online ISBN: 978-81-322-1533-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)