Skip to main content

Aquatic Plant Species and Removal of Contaminants

  • Chapter
  • First Online:
Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up

Abstract

The aquatic and wetland plant species possess exorbitant efficiency to remove various inorganic and organic contaminants including heavy metals, radionuclides, nutrients, explosives and hydrocarbons from wastewaters. The removal of contaminants varies from species to species and is also dependent upon concentration of the contaminant and duration of exposure. The present chapter highlights the variety of contaminants removed by aquatic plants and well-studied plant species are also emphasized (Fig. 2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Abdel-Ghani NT, Hegazy AK, El-Chaghaby GA (2009) Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: biosorption kinetics and equilibrium modeling. Int J Environ Sci Technol 6(2):243–248

    CAS  Google Scholar 

  • Abdelmalik WEY, El-Shinawy RMK, Ishak MM, Mahmoud KA (1980) Uptake of radionuclides by some aquatic macrophytes of Ismailia Canal, Egypt. Hydrobiology 69:3

    Article  Google Scholar 

  • AbdElnaby AM, Egorov MA (2012) Efficiency of different particle sizes of dried Salvinia natans in the removing of Cu(II) and oil pollutions from water. J Water Chem Technol 34:143–146

    Article  Google Scholar 

  • Adhikari T, Kumar R, Singh MV, Rao AS (2010) Phytoaccumulation of lead by selected wetland plant species. Commun Soil Sci Plant Anal 41:2623–2632

    Article  CAS  Google Scholar 

  • Afrous A, Manshouri M, Liaghat A, Pazira E, Sedghi H (2011) Mercury and arsenic accumulation by three species of aquatic plants in Dezful, Iran. Afr J Agric Res 6(24):5391–5397

    Google Scholar 

  • Ajayi TO, Ogunbayo AO (2012) Achieving environmental sustainability in wastewater treatment by phytore-mediation with water hyacinth (Eichhornia crassipes). J Sustain Dev 5:80–90

    Google Scholar 

  • Akinbile CO, Yusoff MS (2012) Assessing water hyacinth (Eichhornia crassipes), (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Int J Phytoremediation 14(3):201–211

    Article  CAS  Google Scholar 

  • Albaldawi IA, Suja’ F, Abdullah SRS, Idris M (2011) Preliminary test of hydrocarbon exposure on Salvinia molesta in phytoremediation process. Revelation Sci 01:52–56

    Google Scholar 

  • Al-Baldawi IA, Abdullah SRS, Suja F, Anuar N, Idris M (2012) Preliminary test of hydrocarbon exposure on Azolla pinnata in phytoremediation process. In: International conference on environment, Energy and biotechnology IPCBEE, vol 33. IACSIT Press, Singapore, pp 244–247

    Google Scholar 

  • Al-Hamdani S (2008) Influence of different sodium chloride concentrations on selected physiological responses of Salvinia. J Aquat Plant Manage 46:172–175

    Google Scholar 

  • Al-Hamdani SH, Sirna CB (2008) Physiological responses of Salvinia minima to different phosphorus and nitrogen concentrations. Am Fern J 98:71–82

    Article  Google Scholar 

  • Alia NA, Bernal MP, Ater M (2004) Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquat Bot 80:163–176

    Article  CAS  Google Scholar 

  • Alonso-Castro AJ, Carranza-Álvarez C, la Torre MCA, Chávez-Guerrero L, García-De la Cruz RF (2009) Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions. Arch Environ Contam Toxicol 57:688–696

    Article  CAS  Google Scholar 

  • Alvarado S, Gu’edez M, Lu’e-Mer’u MP, Nelson G, Alvaro A, Jes’us AC et al (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol 99:8436–8440

    Article  CAS  Google Scholar 

  • Amaya-Chávez A, Martínez-Tabche L, López-López E, Galar-Martínez M (2006) Methyl parathion toxicity to and removal efficiency by Typha latifolia in water and artificial sediments. Chemosphere 63(7):1124–1129

    Article  CAS  Google Scholar 

  • Anawar HM, Garcia-Sanchez A, Alam MT, Majibur RM (2008) Phytofiltration of water polluted with arsenic and heavy metals. Int J Environ Pollut 33:292–312

    Article  CAS  Google Scholar 

  • Ansede JH, Pellechia PJ, Yoch DC (1999) Selenium biotransformation by the salt marsh cordgrass Spartina alterniflora: evidence for dimethylseleniopropionate formation. Environ Sci Technol 33:2064

    Article  CAS  Google Scholar 

  • Arenas A, Marcó D, Torres G (2011) Evaluation of the plant Lemna minor for the bioremediation of water contaminated with mercury. Avances en ciencias e ingeniería 2:1–11

    CAS  Google Scholar 

  • Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97

    Article  CAS  Google Scholar 

  • Arvind P, Prasad MNV (2005) Cadmium-zinc interactions in a hydroponic system using Ceratophyllum demersum: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17:3–20

    Google Scholar 

  • Aslam MM, Hassan S, Baig MA (2010) Removal of metals from the refinery wastewater through vertical flow constructed wetlands. Int J Agric Biol 12:796–798

    CAS  Google Scholar 

  • Azeez NM, Sabbar AA (2012) Efficiency of duckweed (Lemna minor) in phytotreatment of wastewater pollutants from basrah oil refinery. J Appl Phytotechnol Environ Sanit 1:163–172

    CAS  Google Scholar 

  • Bankstona JL, Solab DL, Komora AT, Dwyera DF (2002) Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood. Water Res 36:1539–1546

    Article  Google Scholar 

  • Barber JT, Sharma HA, Ensley HE (1995) Detoxification of phenol by the aquatic angiosperm, Lemna gibba. Chemosphere 31:3567

    Article  CAS  Google Scholar 

  • Begum A, HariKrishna S (2010) Bioaccumulation of trace metals by aquatic plants. Int J Chem Technol Res 2:250–254

    CAS  Google Scholar 

  • Benaroya RO, Tzin V, Tel-Or E, Zamski E (2004) Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol Biochem 42:639

    Article  CAS  Google Scholar 

  • Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146

    Article  CAS  Google Scholar 

  • Best EPH, Zappi ME, Fredrickson HL, Sprecher SL, Larson SL, Ochman M (1997) Screening of aquatic and wetland plant species for phytoremediation of explosives-contaminated groundwater from the Iowa army ammunition plant. Ann N Y Acad Sci 829:179

    Article  CAS  Google Scholar 

  • Best EP, Miller JL, Fredrickson HL, Larson SL, Zappi ME (1998) Explosives removal from groundwater of the Iowa army ammunition plant in continuous-flow laboratory systems planted with aquatic and wetland plants. Army Engineer Waterways Experiment station Vicksburg ms Environmental Lab, Vicksburg

    Google Scholar 

  • Best EP, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999a) Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere 38(14):3383–3396

    Article  CAS  Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999b) Environmental behavior of explosives in groundwater from the Milan army ammunition plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39:2057

    Article  CAS  Google Scholar 

  • Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354

    Article  CAS  Google Scholar 

  • Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB, Shanks JV (2001) Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44:1259

    Article  CAS  Google Scholar 

  • Bolsunovski˘ AI, Ermakov AI, Burger M, Degermendzhi AG, Sobolev AI (2002) Accumulation of industrial radionuclides by the Yenisei River aquatic plants in the area affected by the activity of the mining and chemical plant. Radiat Biol Radioecol 42:194

    Google Scholar 

  • Bolsunovsky A, Zotina T, Bondareva L (2005) Accumulation and release of 241Am by a macrophyte of the Yenisei River (Elodea canadensis). J Environ Radioact 81:33

    Article  CAS  Google Scholar 

  • Borkar RP, Mahatme PS (2011) Wastewater treatment with vertical flow constructed wetland. Int J Environ Sci 2:590–603

    CAS  Google Scholar 

  • Bunluesin S, Kruatrachue M, Pokethitiyook P, Upatham S, Lanza GR (2007) Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticillata biomass. J Biosci Bioeng 103:509–513

    Article  CAS  Google Scholar 

  • Buta E, Paulette L, Mihaiescu T, Buta M, Cantor M (2011) The influence of heavy metals on growth and development of Eichhornia crassipes species, cultivated in contaminated water. Horti Agrobot 39(2):135–141

    CAS  Google Scholar 

  • Calheiros CSC, Rangel AOSS, Castro PML (2007) Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res 41:1790–1798

    Article  CAS  Google Scholar 

  • Calheiros CSC, Rangel AOSS, Castro PML (2009) Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Int J Environ Sci Technol 6(2):243–248

    Google Scholar 

  • Carbonell AA, Aarabi MA, Delaune RD, Gambrell RP, Patrick WH Jr (1998) Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci Total Environ 217:189

    Article  CAS  Google Scholar 

  • Carvalho KM, Martin DF (2001) Removal of aqueous selenium by four aquatic plants. J Aquat Plant Manag 39:33–36

    Google Scholar 

  • Castro-Carrillo LA, Delgadillo-Martínez J, Ferrera-Cerrato R, Alarcón A (2008) Phenanthrene dissipation by Azolla caroliniana utilizing bioaugmentation with hydrocarbonoclastic microorganisms. Interciencia 33:1–7

    Google Scholar 

  • Chale FMM (2012) Nutrient removal in domestic wastewater using common reed (Phragmites mauritianus) in horizontal subsurface flow constructed wetlands. Tanzania J Nat Appl Sci 3:495–499, Online ISSN 1821–7249 2012

    Google Scholar 

  • Cheng J, Landesman I, Bergmann A, Classen JJ, Howard JW, Yamamoto YT (2002) Nutrient removal from swine lagoon liquid by Lemna minor 8627. Trans Asae 45(4):1003–1010

    Google Scholar 

  • Chris A, Masih J, Abraham G (2011) Growth, photosynthetic pigments and antioxidant responses of Azolla filiculoides to monocrotophos toxicity. J Chem Pharm Res 3(3):381–388

    CAS  Google Scholar 

  • Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological response to heavy metals in higher plants, defence against oxidative stress. Zeitschrift fur Naturforsch 54c:730–734

    Google Scholar 

  • Cohen MF, Williams J, Yamasaki H (2002) Biodegradation of diesel fuel by an Azolla derived bacterial consortium. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng A37(9):1593–1606

    CAS  Google Scholar 

  • Cortes-Esquive JA, Giácoman-Vallejos G, Barceló-Quintal ID, Méndez-Novelo R, Ponce-Caballero MC (2012) Heavy metals removal from swine wastewater using constructed wetlands with horizontal sub-surface flow. J Environ Prot 3:871–877

    Article  Google Scholar 

  • Costa ML, Santos MC, Carrapiço F (1999) Biomass characterization of Azolla filiculoides grown in natural ecosystems and wastewater. Hydrobiologia 415:323–327

    Article  Google Scholar 

  • Davies LC, Carias CC, Novais JM, Martins-Dias S (2005) Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecol Eng 25:594–605

    Article  Google Scholar 

  • Day JA, Saunders FM (2004) Glycoside formation from chlorophenols in Lemna minor. Environ Toxicol Chem 25:613

    Article  Google Scholar 

  • DeBusk TA, Reddy KR (1987) Density requirements to maximise the productivity of water hyacinth (Eichhornia crassipes [Mart] Solms). In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia Publishing Inc, Orlando, FL, pp 673–680, 1032 p

    Google Scholar 

  • Del-Campo Marıń CM, Oron G (2007) Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters. Water Res 41:4579–4584

    Article  CAS  Google Scholar 

  • Delgado M, Bigeriego M, Guardiola E (1993) Uptake of Zn, Cr and Cd by water hyacinth. Water Res 27:269

    Article  CAS  Google Scholar 

  • Demirezen D, Aksoy A (2006) Common hydrophytes as bioindicators of iron and manganese pollution. Ecol Indicators 6:388–393

    Article  CAS  Google Scholar 

  • Deval CG, Mane AV, Joshi NP, Saratale GD (2012) Phytoremediation potential of aquatic macrophyte Azolla caroliniana with references to zinc plating effluent. Emir J Food Agric 24(3):208–223

    Google Scholar 

  • Dhir B (2010) Use of aquatic plants in removing heavy metals from wastewater. Int J Environ Eng 2(1/2/3):185–201

    Article  Google Scholar 

  • Dhir B, Srivastava S (2011) Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol Eng 37:893–896

    Article  Google Scholar 

  • Dhir B, Sharmila P, Saradhi PP (2008) Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Braz J Plant Physiol 20:61–70

    Article  CAS  Google Scholar 

  • Dhir B, Sharmila P, Saradhi PP (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol 39:754–781

    Article  CAS  Google Scholar 

  • Dixit S, Dhote S (2010) Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ Monit Assess 169(1–4):367–374

    Article  CAS  Google Scholar 

  • Dixit S, Tiwari S (2007) Effective utilization of an aquatic weed in an eco-friendly treatment of polluted water bodies. J Appl Sci Environ Manage 11(3):41–44

    Google Scholar 

  • Dixit S, Dhote S, Dubey R, Vaidya HM, Das RJ (2010) Sorption characteristics of heavy metal ions by aquatic weed. Desalination Water Treat 20:307–312

    Article  CAS  Google Scholar 

  • Dogan M, Saygideger SD, Colak U (2009) Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull Environ Contam Toxicol 83:249–254

    Article  CAS  Google Scholar 

  • Dordio AV, Carvalho PAJ, Estêvão CAJ, Pinto AP, Cristina C (2007) Removal of pharmaceuticals in constructed wetlands using Typha and LECA. A pilot study. http://dspace.uevora.pt/rdpc/bitstream/10174/1290/1/AnaDordio_Wetpol2007-2.pdf

  • Dordio AV, Duarte C, Barreiros M, Carvalho AJ, Pinto AP, da Costa CT (2009) Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.potential use for phytoremediation. Bioresour Technol 100(3):1156–1161

    Article  CAS  Google Scholar 

  • Dordio AV, Ferroa R, Teixeiraab D, Palaceac AJ, Pintoab AP, Diasac CMB (2011) Study on the use of Typha spp. for the phytotreatment of water contaminated with ibuprofen. Int J Environ Anal Chem 91:654–667

    Article  CAS  Google Scholar 

  • Dosnon-olette R, Couderchet M, Oturan MA, Oturan N, Eullaffroy P (2011) Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate. Int J Phytoremediation 13(6):601–612

    Article  CAS  Google Scholar 

  • El-Kheir WA, Ismail G, El-nour FA, Tawfik T, Hammad D (2007) Assessment of the efficiency of duckweed (Lemna gibba) in wastewater treatment. Int J Agric Biol 9:681–687

    Google Scholar 

  • El-Shinawy RMK, Abdel-Malik WEY (1980) Retention of radionuclides by some aquatic fresh water plants. Hydrobiology 69:125

    Article  CAS  Google Scholar 

  • Ena A, Carlozzi P, Pushparaj B, Paperi R, Carnevale S, Sacchi A (2007) Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill effluent. Grasas y Aceites 58(1), Enero-Marzo 34–39

    Google Scholar 

  • Ensley HE, Barber JT, Polita MA, Oliver AI (1994) Toxicity and metabolism of 2, 4-dichlorophenol by aquatic angiosperm Lemna gibba. Environ Toxicol Chem 13:325

    CAS  Google Scholar 

  • Espinoza-Quiñones FR, Módenes AN, Costa IL Jr, Palácio SM, Daniela NS, Trigueros EG, Kroumov AD, Silva EA (2009) Kinetics of lead bioaccumulation from a hydroponic medium by aquatic macrophytes Pistia stratiotes. Water Air Soil Pollut 203:29–37

    Article  CAS  Google Scholar 

  • Estrella-Gómeza NE, Sauri-Duchb E, Zapata-Pérezc O, Santamaría JM (2012) Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environ Exp Bot 75:188–194

    Article  CAS  Google Scholar 

  • Fernandez RT, Whitwell T, Riley MB, Bernard CR (1999) Evaluating semiaquatic herbaceous perennials for use in herbicide phytoremediation. J Am Soc Horticult Sci 124:539

    CAS  Google Scholar 

  • Feuillebois R, Gum J, Woodring K, Carvalho-Knighton KM (2006) TNT remediation with Lemna minor. Georgia World Congress Center. The 231st ACS national meeting, Atlanta, GA, 26–30 Mar 2006

    Google Scholar 

  • Forni C, Patrizi C, Migliore L (2006) Floating aquatic macrophytes as a decontamination tool for antimicrobial drugs. In: Twardowska I et al (eds) Soil and water pollution monitoring, protection and remediation. Springer, pp 3–23

    Google Scholar 

  • Fornia C, Cascone A, Fioric M, Migliorea L (2002) Sulphadimethoxine and Azolla filiculoides Lam.: a model for drug remediation. Water Res 36:3398–3403

    Article  Google Scholar 

  • Foroughi M (2011a) Investigation of the influence of Ceratophyllum demersum to refine diluted compost latex. J Appl Sci Environ Manage 15(2):371–374

    Google Scholar 

  • Foroughi M (2011b) Role of Ceratophyllum demersum in recycling macro elements from wastewater. J Appl Sci Environ Manage 15(2):401–405

    Google Scholar 

  • Foroughi M, Najafi P, Toghiani S (2010) Trace elements removal from waster water by Ceratophyllum demersum. J Appl Sci Environ Manage 15:197–201

    Google Scholar 

  • Fritioff A, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63:220–227

    Article  CAS  Google Scholar 

  • Fritioff A, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal. Environ Pollut 133:265–274

    Article  CAS  Google Scholar 

  • Gallardo-Williams MT, Whalen VA, Benson RF, Martin DF (2002) Accumulation and retention of lead by cattail (Typha domingensis), hydrilla (Hydrilla verticillata), and duckweed (Lemna obscura). J Environ Sci Health A Toxic Hazard Subst Environ Eng 37(8):1399–1408

    Article  Google Scholar 

  • Gao J, Garrison AW, Mazur CS, Wolfe NL, Hoehamer CF (2000a) Uptake and phytotransformation of o, p′-DDT and p, p′-DDT by axenically cultivated aquatic plants. J Agric Food Chem 48(12):6121–6127

    Article  CAS  Google Scholar 

  • Gao J, Garrison AW, Hoehamen C, Mazur CS, Wolfe NL (2000b) Uptake and phytotransformation of organophosphorous pesticide by axenically cultivated aquatic plants. J Agric Food Chem 48:6114

    Article  CAS  Google Scholar 

  • Gardner JL, Al-Hamdani SH (1997) Interactive effects of aluminum and humic substances on Salvinia. J Aquat Plant Manage 35:30–34

    Google Scholar 

  • Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000) Phytode-gradation of p, p′-DDT and the enantiomers of o, p′-DDT. Environ Sci Technol 34:1663

    Article  CAS  Google Scholar 

  • Ghabbour EA, Davies G, Lam YY, Vozzella ME (2004) Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes) [Mart.] (SolmLaubach: Pontedericeae) in the Nile Delta, Egypt. J Environ Pollut 131:445–451

    Article  CAS  Google Scholar 

  • Gobas EAPC, McNeil EJ, Lovett-Doust L, Haffner GD (1991) Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environ Sci Technol 25:924

    Article  CAS  Google Scholar 

  • Gonzalez-Mendoza D, Ramoza-Perez F, Gremaldo-Juarez O, Escoboza-Garcia F, Soto-Ortiz R (2011) Physiological responses of Azolla caroliniana exposure to cadmium. World J Agric Sci 7(3):347–350

    CAS  Google Scholar 

  • Gopinath, Karthikeyan, Sivakumar, Magesh, Mohana-Sundaram, Poongodi, Ramesh, Rajamohan (2012) Studies on removal of malachite green from aqueous solution by sorption method sing water hyacinth – Eichornia crassipes roots. J Biodivers Environ Sci 2:1–8

    Google Scholar 

  • Gray JL, Sedlak DL (2005) The fate of estrogenic hormones in an engineered treatment wetland with dense macrophytes. Water Environ Res 77:24

    Article  CAS  Google Scholar 

  • Gross A, Kaplan D, Baker K (2007) Removal of chemical and microbiological contaminants from domestic greywater using a recycled vertical flow bioreactor (RVFB). Ecol Eng 3(1):107–114

    Article  Google Scholar 

  • Gupta M, Chandra P (1994) Lead contamination in Vallisnaria spiralis and Hydrilla verticillata (L.f.). Royle J Environ Sci Health A29:503–516

    CAS  Google Scholar 

  • Gupta M, Chandra P (1996) Bioaccumulation and physiological changes in Hydrilla verticillata (l.f.) Royle in response to mercury bull. Environ Contam Toxicol 56:319–326

    Article  CAS  Google Scholar 

  • Gupta M, Rai UN, Tripathi RD, Chandra P (1995) Lead induced changes in glutathione and phytochelatin in Hydrilla verticillate. Chemosphere 30:2011–2020

    Article  CAS  Google Scholar 

  • Hadad HR, Mufarrege MM, Pinciroli M, Di Luca GA, Maine MA (2010) Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland. Arch Environ Contam Toxicol 58(3):666–675

    Article  CAS  Google Scholar 

  • Haeba M, Bláha L (2011) Comparison of different endpoints responses in aquatic plant Lemna minor exposed to ketoconazole. Egypt J Nat Toxins 8(1, 2):49–57

    Google Scholar 

  • Hafez N, Abdalla S, Ramadan YS (1998) Accumulation of phenol by Potamogeton crispus from aqueous industrial waste. Bull Environ Contam Toxicol 60:944

    Article  CAS  Google Scholar 

  • Hansen AT, Stark RA, Hondzo M (2011) Uptake of dissolved nickel by Elodea canadensis and epiphytes influenced by fluid flow conditions. Hydrobiologia 658:127–138

    Article  CAS  Google Scholar 

  • Hanson ML, Sibley PK, Ellis DA, Fineberg NA, Mabury SA, Solomon KR, Muir DC (2002) Trichloroacetic acid fate and toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum under field conditions. Aquat Toxicol 56:241–255

    Article  CAS  Google Scholar 

  • Hattink J, Wolterbeek HT (2001) Accumulation of 99Tc in duckweed Lemna minor L. as a function of growth rate and 99Tc concentration. J Environ Radioact 57:117–138

    Article  CAS  Google Scholar 

  • Hattink J, De Goeij JJM, Wolterbeek HT (2000) Uptake kinetics of 99Tc in common duckweed. Environ Exp Bot 44:9–13

    Article  CAS  Google Scholar 

  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA (2011) Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int J Environ Sci Technol 8:639–648

    CAS  Google Scholar 

  • Hench KR, Bissonnette GK, Sexstone AJ, Coleman JG, Garbutt K, Skousen JG (2003) Fate of physical, chemical, and microbial contaminants in domestic wastewater following treatment by small constructed wetlands. Water Res 37:921–927

    Article  CAS  Google Scholar 

  • Hoffman T, Kutter C, Santamaria JM (2004) Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Eng Life Sci 4:61–65

    Article  CAS  Google Scholar 

  • Holtra A, Traczewska TM, Sitarska M, Zamorska-Wojdyla M (2010) Assessment of the phytoremediation efficacy of boron-contaminated waters by Salvinia natans. Environ Prot Eng 36:87–94

    CAS  Google Scholar 

  • Hopple JA, Foster GD (1996) Hydrophobic organochlorine compounds sequestered in submersed aquatic macrophytes (Hydrilla verticillata (L.F.) Royle) from the tidal Potomac River (USA). Environ Pollut 94:39–46

    Article  CAS  Google Scholar 

  • Hu C, Zhang L, Hamilton D, Zhou W, Yang T, Zhu D (2007) Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia 579:211–218

    Article  CAS  Google Scholar 

  • Hua J, Zhang C, Yin Y, Chen R, Wang X (2011) Phytoremediation potential of three aquatic macrophytes in manganese- contaminated water. Water Environ J 26:335–342

    Article  CAS  Google Scholar 

  • Hughes JB, Shanks JE, Vanderford MY, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271

    Article  CAS  Google Scholar 

  • Hussain ST, Mahmood T, Malik SA (2010) Phytoremediation technologies for Ni++ by water hyacinth. Afr J Biotechnol 9(50):8648–8660

    Google Scholar 

  • Jafari N (2010) Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). J Appl Sci Environ Manage 14(2):43–49

    Google Scholar 

  • Kadirvelu K, Karthika C, Vennilamani N, Pattabhi S (2005) Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: kinetic and equilibrium studies. Chemosphere 60:1009–1017

    Article  CAS  Google Scholar 

  • Kalipci E (2011) Investigation of decontamination effect of Phragmites australis for Konya domestic wastewater treatment. J Med Plants Res 5(29):6571–6577

    CAS  Google Scholar 

  • Kamarudzaman AN, Ismail NS, Aziz RA, Ab Jalil MF (2011) Removal of nutrients from landfill leachate using subsurface flow constructed wetland planted with Limnocharis flava and Scirpus atrovirens. In: International conference on environmental and computer science, IPCBEE, vol 19, IACSIT Press, Singapore

    Google Scholar 

  • Kanabkaew T, Puetpaiboon U (2004) Aquatic plants for domestic wastewater treatment: Lotus (Nelumbo nucifera) and Hydrilla (Hydrilla verticillata) systems. Songklanakarin J Sci Technol 26(5):749–756

    CAS  Google Scholar 

  • Kara Y (2010) Bioaccumulation of nickel by aquatic macrophytes. Desalination Water Treat 19:325–328

    Article  CAS  Google Scholar 

  • Kara Y, Kara I (2005) Removal of cadmium from water using duckweed (Lemna trisulca). Int J Agric Biol 7:660–662

    CAS  Google Scholar 

  • Khellaf N, Zerdaoui M (2010a) Growth response of the duckweed Lemna gibba to copper and nickel phytoaccumulation. Ecotoxicology 19:1363–1368

    Article  CAS  Google Scholar 

  • Khellaf N, Zerdaoui M (2010b) Growth, photosynthesis and respiratory response to copper in Lemna minor: a potential use of duckweed in biomonitoring. Iran J Environ Health Sci Eng 7:299–306

    CAS  Google Scholar 

  • King JK, Harmon SM, Fu TT, Gladden JB (2002) Mercury removal, methylmercury formation, and sulfate-reducing bacteria profiles in wetland mesocosms. Chemosphere 46:859–870

    Article  CAS  Google Scholar 

  • Knuteson SL, Whitwell T, Klaine SJ (2002) Influence of plant age and size on simazine uptake and toxicity. J Environ Qual 31:2090

    Article  Google Scholar 

  • Kondo K, Kawabata H, Ueda S, Hasegawa H, Inaba J, Mitamura O, Seike Y, Ohmomo Y (2003) Distribution of aquatic plants and absorption of radionuclides by plants through the leaf surface in brackish Lake Obuchi, Japan, bordered by nuclear fuel cycle facilities. J Radioanalytical Nuclear Chem 257:305

    Article  CAS  Google Scholar 

  • Kristanti RA, Kanbe M, Toyama T, Tanaka Y, Tang Y, Wu X, Mori K (2012) Accelerated biodegradation of nitrophenols in the rhizosphere of Spirodela polyrrhiza. J Environ Sci (China) 24(5):800–807

    Article  CAS  Google Scholar 

  • Kumar GP, Prasad MNV (2004) Cadmium adsorption and accumulation by Ceratophyllum demersum L.: A fresh water macrophyte. Eur J Miner Process Environ Protect 4:95–101

    Google Scholar 

  • Kumar PS, Kumar SS, Anuradha K, Sudha B, Ansari S (2012) Phytoremediation as an alternative for treatment of paper industry effluents by using water hyacinth (Eichhornia crassipes) – a polishing treatment. Int J Res Chem Environ 2:95–99

    Google Scholar 

  • Kutty SRM, Ngatenah SNIB, Isa MH, Malakahmad A (2009) Nutrients removal from municipal wastewater treatment plant effluent using Eichhornia Crassipes. World Acad Sci Eng Technol 36:828–833

    Google Scholar 

  • Lacher C, Smith RW (2002) Sorption kinetics of Hg(II) onto Potamogeton natans biomass. Eur J MinerProcess Environ Protect 2:220–231

    CAS  Google Scholar 

  • Larson R, Sims G, Marley K, Montez-Ellis M, Paul T, Michelle C (2002) Nitrate management using terrestrial and aquatic plant species. http://igc.siu.edu/proceedings/02/larson.pdf

  • Leblebici Z, Aksoy A (2011) Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (lemnaceae): interactions with nutrient enrichment. Water Air Soil Pollut 214:175–184

    Article  CAS  Google Scholar 

  • Lee KE, Huggins DG, Thurman EM (1995) Effects of hydrophyte community structure on Atrazine and Alachlor degradation in wetlands. systematics and ecology. In: Campbell KL (ed) Versatility of wetlands in the agricultural landscape. American Society of Agricultural Engineers, Tampa, pp 525–538

    Google Scholar 

  • Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Laing GD, Tack FMG, De Pauw N, Verloo MG (2008) Removal of heavy metals from industrial effluents by the submerged aquatic plant Myriophyllum spicatum L. In: Vyamazal J (ed) Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands. Springer, pp 211–221

    Google Scholar 

  • Lohi A, Cuenca MA, Anania G, Upreti SR, Wan L (2008) Biodegradation of diesel fuel-contaminated wastewater using a three-phase fluidized bed reactor. J Hazard Mater 154:105–111

    Article  CAS  Google Scholar 

  • Lovett-Doust J, Lovett-Doust L, Biernacki M, Mal TK, Lazar R (1997) Organic contaminants in submersed macrophytes drifting in the Detroit River. Can J Fish Aquat Sci 54(10):2417–2427

    CAS  Google Scholar 

  • Low KS, Lee CK, Tai CH (1994) Biosorption of copper by water hyacinth roots. J Environ Sci Health A29(1):171

    CAS  Google Scholar 

  • Lu X, Kruatrachue M, Pokethitiyook P, Homyok K (2004) Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Sci Asia 30:93–103

    Article  CAS  Google Scholar 

  • Lu X, Nguyen N, Gabos S, Le XC (2009) Arsenic speciation in cattail (Typha latifolia) using chromatography and mass spectrometry. Mol Nutr Food Res 53(5):566–571

    Article  CAS  Google Scholar 

  • Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2010) Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 17:84–96

    Article  CAS  Google Scholar 

  • Lu Q, Zhenli LH, Graetz DA, Stoffella PJ, Yang X (2011) Uptake and distribution of metals by water lettuce (Pistia stra tiotes L.). Environ Sci Pollut Res 18:978–986

    Article  CAS  Google Scholar 

  • Machate T, Noll H, Behrens H, Kettrup A (1997) Degradation of phenanthracene and hydraulic characteristics in constructed wetland. Water Res 31:554

    Article  CAS  Google Scholar 

  • Mahamadi C (2011) Water hyacinth as a biosorbent: a review. Afr J Environ Sci Technol 5(13):1137–1145

    CAS  Google Scholar 

  • Mahmood T, Malik SA, Hussain ST (2010) Biosorption and recovery of heavy metals from aqueous solutions by Eichhornia crassipes (water hyacinth) ash. Bioresource 5(2):1244–1256

    CAS  Google Scholar 

  • Maine MA, Duarte MV, Sun˜ e’ NL (2001) Cadmium uptake by floating macrophytes. Water Res 35:2629–2634

    Article  CAS  Google Scholar 

  • Maine AM, Sune NL, Lagger SC (2004) Bioaccumulation: comparison of the capacity of two aquatic macrophytes. Water Res 38:1494

    Article  CAS  Google Scholar 

  • Mane PC, Bhosle AB, Kulkarni PA (2011) Biosorption and biochemical study on water hyacinth (Eichhornia crassipes) with reference to selenium. Arch Appl Sci Res 3(1):222–229

    CAS  Google Scholar 

  • Manios T, Stentiford EI, Millner P (2003) Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewage sludge compost. Chemosphere 53:487–494

    Article  CAS  Google Scholar 

  • Matamoros V, Nguyen LX, Arias CA, Salvadó V, Brix H (2012) Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere 88(10):1257–1264

    Article  CAS  Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for simultaneous removal of heavy metals (Buenos Aires, Argentine). Chemosphere 57:997

    Article  CAS  Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62:247–254

    Article  CAS  Google Scholar 

  • Mkandawire M, Dudel G (2005) Accumulation of arsenic in Lemna gibba (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89

    Article  CAS  Google Scholar 

  • Mkandawire M, Dudel EG (2007) Are Lemna spp. Effective phytoremediation agents ? Bioremediation Biodivers Bioavailab 1:56–71

    Google Scholar 

  • Mkandawire M, Lyubun YV, Kosterin PV, Dudel EG (2004a) Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability. Environ Toxicol 19:26–35

    Article  CAS  Google Scholar 

  • Mkandawire M, Taubert B, Dudel EG (2004b) Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytoremediation 6(4):347–362

    Article  CAS  Google Scholar 

  • Mojiri A (2012) Phytoremediation of heavy metals from municipal wastewater by Typha domingensis. Afr J Microbiol Res 6(3):643–647

    CAS  Google Scholar 

  • Mokhtar H, Morad N, Fizri FFA (2011) Hyperaccumulation of copper by two species of aquatic plants. In: International conference on environment science and engineering IPCBEE 8. IACSIT Press, Singapore, pp 115–118

    Google Scholar 

  • Molisani MM, Rocha R, Machado W, Barreto RC, Lacerda ID (2006) Mercury contents in aquatic macrophytes from two Reservoirs in the para’ıba do sul: Guandu river system, Se, Brazil. Braz J Biol 66:101

    Article  CAS  Google Scholar 

  • Murithi G, Onindo CO, Muthakia GK (2012) Kinetic and equilibrium study for the sorption of Pb(II) ions from aqueous phase by water hyacinth (Eichhornia crassipes). Bull Chem Soc Ethiopia 26(2):181–193

    CAS  Google Scholar 

  • Muthunarayanan V, Santhiya M, Swabna V, Geetha A (2011) Phytodegradation of textile dyes by water hyacinth (Eichhornia crassipes) from aqueous dye solutions. Int J Environ Sci 7:1709–1724

    Google Scholar 

  • Narain S, Ojha CSP, Mishra SK, Chaube UC, Sharma PK (2011) Cadmium and chromium removal by aquatic plant. Int J Environ Sci 1:1297–1304

    CAS  Google Scholar 

  • Nesterenko-Malkovskaya A, Kirzhner F, Zimmels Y, Armon R (2012) Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria. Chemosphere 87(10):1186–1191

    Article  CAS  Google Scholar 

  • Nguyen TTT, Davy F B, Rimmer M, De Silva S (2009) Use and exchange of genetic resources of emerging species for aquaculture and other purposes. FAO/NACA expert meeting on the use and exchange of aquatic genetic resources relevant for food and agriculture, 31 March–02 April 2009, Chonburi, Thailand

    Google Scholar 

  • Nichols PB, Couch JD, Al-Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 1439:1–8

    Google Scholar 

  • Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2009) A constructed wetland model for synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.). Water Sci Technol 60(6):1565–1574, AUTHOR(S)

    Article  CAS  Google Scholar 

  • Nzengung VA, Lee NW, Rennels DE, McCutcheon SC, Wang C (1999) Use of aquatic plants and algae for decontamination of waters polluted with chlorinated alkanes. Int J Phytoremediation 1:203

    Article  CAS  Google Scholar 

  • Obek E, Sasmaz A (2011) Bioaccumulation of aluminum by Lemna gibba from secondary treated municipal wastewater effluents. Bull Environ Contam Toxicol 86(2):217–220

    Article  CAS  Google Scholar 

  • Odjegba VJ, Fasidi IO (2006) Effects of heavy metals on some proximate composition of Eichhornia crassipes. J Appl Sci Environ Manage 10(1):83–87

    Google Scholar 

  • Olette R, Couderchet M, Biagianti S, Eullaffroy P (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70(8):1414–1421

    Article  CAS  Google Scholar 

  • Ong S, Ho L, Wong Y, Danny LD, Samad H (2011) Semi-batch operated constructed wetlands planted with Phragmites australis for treatment of dyeing wastewater. J Eng Sci Technol 6:619–627

    Google Scholar 

  • Ortega-Clementea LA, Luna-Pabellob VM (2012) Dynamic performance of a constructed wetland to treat lindane-contaminated water. Int Res J Eng Sci Technol Innov 1(2):57–65

    Google Scholar 

  • Osmolovskaya N, Kurilenko V (2005) Macrophytes in phytoremediation of heavy metal contaminated water and sediments in urban inland ponds. Geophys Res Abstr 7:10510

    Google Scholar 

  • Panich-pat T, Srinives P, Kruatrachue M, Pokethitiyook P, Upathamd S, Lanzae GR (2005) Electron microscopic studies on localization of lead in organs of Typha angustifolia grown on contaminated soil. ScienceAsia 31:49–53

    Article  CAS  Google Scholar 

  • Paola IM, Paciolla C, D’aquino L, Morgana M, Tommasi F (2007) Effect of rare earth elements on growth and antioxidant metabolism in Lemna minor. Caryologia 60:125–128

    Google Scholar 

  • Parra LM, Torres G, Arenas AD, Sánchez E, Rodríguez K (2012) Phytoremediation of low levels of heavy metals using duckweed (Lemna minor). In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, pp 451–463

    Chapter  Google Scholar 

  • Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998) Transformation of 2,4,6-trinitrotoluene by the aquatic plant Myriophyllum aquaticum. Environ Toxicol Chem 17:2266

    CAS  Google Scholar 

  • Peng K, Luo C, Lou L, Li X, Shen Z (2008) Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ 392(1):22–29

    Article  CAS  Google Scholar 

  • Phetsombat S, Kruatrachue M, Pokethitiyook P, Upatham S (2006) Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. J Environ Biol 27:671–678

    Google Scholar 

  • Polomski RF, Taylor MD, Bielenberg DG, Bridges WC, Klaine SJ, Whitwell T (2009) Nitrogen and phosphorus remediation by three floating aquatic macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands. Water Air Soil Pollut 197:223–232

    Article  CAS  Google Scholar 

  • Popa K, Cecal A, Humelnicu D, Caraus I, Draghici CL (2004) Removal of 60Co2+ and 137Cs+ ions from low radioactive solutions using Azolla caroliniana willd. water fern. Cent Eur J Chem 2:434

    Article  CAS  Google Scholar 

  • Popa K, Palamaru MN, Iordan AR, Humelnicu D, Drochioiu G, Cecal A (2006) Laboratory analyses of 60Co2+, 65Zn2+ and (55 + 59)Fe3+ radioactions uptake by Lemna minor. Isot Environ Health Stud 42:87

    Article  CAS  Google Scholar 

  • Prajapati SK, Meravi N, Singh S (2012) Phytoremediation of chromium and cobalt using Pistia stratiotes: a sustainable approach. Proc Int Acad Ecol Environ Sci 2(2):136–139

    CAS  Google Scholar 

  • Prasad MNV, Malec P, Waloszek K, Bojko M, Strzalka K (2001) Physiological responses of Lemna trisulca to cadmium and copper bioaccumulation. Plant Sci 161:881–889

    Article  CAS  Google Scholar 

  • Prasertsup P, Ariyakanon N (2011) Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). Int J Phytoremediation 13(4):383–395

    Article  Google Scholar 

  • Pratas J, Rodrigues N, Alves F, Patricio J (2010) Uranium removal in artificial wetlands. In: Advances in waste management. ISBN: 978-960-474-190-8 pp 112–117

    Google Scholar 

  • Purwanti IF, Mukhlisin M, Abdullah SRS, Basri H, Idris M, Hamzah A, Latif MT (2012) Range finding test of hydrocarbon on Scirpus mucronatus as preliminary test for phytotoxicity of contaminated soil. Revelation Sci 2:61–65

    Google Scholar 

  • Qian JH, Zayed A, Zhu ML, Yu M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants, III: uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 28:1448

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa KH, Ueda K, Maki T, Okumura C, Rahman MM (2007) Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. Chemosphere 69:493–499

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Makia T, Rahman MM (2008) Arsenic uptake by aquatic macrophyte Spirodela polyrhiza L: interactions with phosphate and iron. J Hazard Mater 160:356–361

    Article  CAS  Google Scholar 

  • Rai PK, Tripathi BD (2009) Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli industrial region, India. Environ Monit Assess 148:75–84

    Article  CAS  Google Scholar 

  • Rai UN, Tripathi RD, Sinha S, Chandra P (1995) Chromium and cadmium bioaccumulation and toxicity in Hydrilla verticillata (L.f.) Royle and Chara corallina Wildenow. J Environ Sci Health A 30:537–551

    Google Scholar 

  • Rai UN, Tripathi RD, Vajpayee P, Pandey N, Ali MB, Gupta DK (2003) Cadmium accumulation and its phytotoxicity in Potamogeton pectinatus (Potamogetonaceae). Bull Environ Contam Toxicol 70:566

    Article  CAS  Google Scholar 

  • Rakhshaee R, Khosravi M, Ganji MT (2006) Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. J Hazard Mater 134:120–129

    Article  CAS  Google Scholar 

  • Ramamoorthy D, Kalaivani S (2011) Studies on the effect of Typha angustata (Reed) on the removal of sewage water pollutants. J Phytol 3(6):13–15

    CAS  Google Scholar 

  • Ramprasad C (2012) Experimental study on waste water treatment using lab scale reed bed system using Phragmitis australis. Int J Environ Sci 3:297–304

    CAS  Google Scholar 

  • Rawat SK, Rana RKS, Singh P (2012) Remediation of nitrite contamination in ground and surface waters using aquatic macrophytes. J Environ Biol 33:51–56

    CAS  Google Scholar 

  • Rice PJ, Anderson TA, Coats JR (1997) Phytoremediation of herbicide-contaminated surface water with aquatic plants. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. American Chemical Society, Washington, DC

    Google Scholar 

  • Rivera R, Medina VF, Larson SL, McCutcheon SC (1998) Phytotreatment of TNT-contaminated groundwater. J Soil Contam 7:511

    Article  CAS  Google Scholar 

  • Roy S, Hanninen O (1994) Pentachlorophenol: uptake/elimination, kinetics and metabolism in an aquatic plant, Eicchornia crassipes. Environ Toxicol Chem 13:763

    CAS  Google Scholar 

  • Samardakiewicz S, Krzesłowska M, Bilski H, Bartosiewicz R, Woźny A (2012) Is callose a barrier for lead ions entering Lemna minor L. root cells? Protoplasma 249(2):347–351

    Article  CAS  Google Scholar 

  • Samdani S, Attar SJ, Kadam C, Baral SS (2008) Treatment of Cr (VI) contaminated wastewater using biosorbent, Hydrilla verticillata. Int J Eng Res Ind Appl 1:271–282, ISSN 0974–1518

    Google Scholar 

  • Sánchez D, Graça MAS, Canhoto J (2007) Testing the use of the water Milfoil (Myriophyllum spicatum L.) in laboratory toxicity assays. Bull Environ Contam Toxicol 78:421–426

    Article  CAS  Google Scholar 

  • Sánchez-viveros G, González-mendoza D, Alarcón A, Ferrera-cerrato R (2010) Copper effects on photosynthetic activity and membrane leakage of Azolla filiculoides and A. Caroliniana. Int J Agric Biol 12:365–366

    Google Scholar 

  • Sasmaza A, Obek E (2012) The accumulation of silver and gold in Lemna gibba exposed to secondary effluents. Chem Erde-Geochem 72:149–152

    Article  CAS  Google Scholar 

  • Saulais M, Bedell JP, Delolme C (2011) Cd, Cu and Zn mobility in contaminated sediments from an infiltration basin colonized by wild plants: The case of Phalaris arundinacea and Typha latifolia. Water Sci Technol 64:255–262

    Article  CAS  Google Scholar 

  • Saygideger S, Dogan M, Keser G (2004) Effect of lead and pH on lead uptake, chlorophyll and nitrogen content of Typha latifolia L. and Ceratophyllum demersum L. Int J Agric Biol 6:168–172

    CAS  Google Scholar 

  • Schneider IAH, Smith RW, Rubio J (1999) Effect of some mining chemicals on biosorption of Cu(II) by the non living biomass of the fresh water macrophyte Potamogeton lucens. Miner Eng 12:255–260

    Article  CAS  Google Scholar 

  • Shah RA, Kumawat DM, Singh N, Wani KA (2010) Water hyacinth (eichhornia crassipes) as a remediation tool for dye-effluent pollution. Int J Sci Nat 1(2):172–178

    Google Scholar 

  • Shaikh PR, Bhosle A (2011) Bioaccumulation of chromium by aquatic macrophytes Hydrilla sp. & Chara sp. Adv Appl Sci Res 2(1):214–220

    CAS  Google Scholar 

  • Sharain-Liew YL, Joseph CG, How S (2011) Biosorption of lead contaminated wastewater using cattails (Typha angustifolia) leaves: kinetic studies. J Serb Chem Soc 76(7):1037–1047

    Article  CAS  Google Scholar 

  • Sharif F, Westerhoff P, Herckes P (2013) Sorption of trace organics and engineered nanomaterials onto wetland plant material. Environ Sci Process Impacts. doi:10.1039/C2EM30613A Advance article

  • Sharma HA, Barber JT, Ensley HE, Polito MA (1997) Chlorinated phenols and phenols by Lemna gibba. Environ Toxicol Chem 16:346

    CAS  Google Scholar 

  • Shokod’Ko TI, Drobot PI, Kuzmenko MI, Shklyar AY (1992) Peculiarities of radionuclides accumulation by higher aquatic plants. Hydrobiol J 28:92

    Google Scholar 

  • Shuib N, Baskaran K, Davies WR, Muthukumaran S (2011) Effluent quality performance of horizontal subsurface flow constructed wetlands using natural zeolite (escott). In: International conference on environment science and engineering IPCBEE, vol 8. IACSIT Press, Singapore

    Google Scholar 

  • Singh NK, Pandey GC, Rai UN, Tripathi RD, Singh HB, Gupta DK (2005) Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. Bull Environ Contam Toxicol 74:857

    Article  CAS  Google Scholar 

  • Singh A, Kumar CS, Agarwal A (2012a) Physiological study of combined heavy metal stress on Hydrilla verticillata (l.f.) Royle. Int J Environ Sci 2:2234–2242

    CAS  Google Scholar 

  • Singh D, Gupta R, Tiwari A (2012b) Potential of duckweed (Lemna minor) for removal of lead from wastewaters by phytoremediation. J Pharm Res 5(3):1578–1582

    Google Scholar 

  • Sinha S (2002) Oxidative stress induced by HCH in Hydrilla verticillata Royle: modulation in uptake and toxicity due to Fe. Chemosphere 46:281–288

    Article  CAS  Google Scholar 

  • Sivaci EK, Sivaci A, Sokman M (2004) Biosorption of cadmium by Myriophyllum spicatum and Myriophyllum triphyllum orchard. Chemosphere 56:1043

    Article  CAS  Google Scholar 

  • Sivaci A, Elmas E, Gumus F (2008a) Changes in abscisic acid contents of some aquatic plants exposed to cadmium and salinity. Int J Bot 4:104–108

    Article  CAS  Google Scholar 

  • Sivaci A, Fatih E, Gümüş E, Sivaci R (2008b) Removal of Cadmium by Myriophyllum heterophy Emire llum Michx. and Potamogeton crispus L. and its effect on pigments and total phenolic compounds. Arch Environ Contam Toxicol 54:612–618

    Article  CAS  Google Scholar 

  • Smadar E, Benny C, Tel-Or E, Lorena V, Antonio C, Aharon G (2011) Removal of silver and lead Ions from water wastes using Azolla filiculoides, an aquatic plant, which adsorbs and reduces the ions into the corresponding metallic nanoparticles under microwave radiation in 5 min. Water Air Soil Pollut 218:365–370

    Article  CAS  Google Scholar 

  • So LM, Chu LM, Wong PK (2003) Microbial enhancement of Cu2+ removal capacity of Eichhornia crassipes (Mart.). Chemosphere 52:1499–1503

    Article  CAS  Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2004) Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. Int J Environ Sci Technol 1:265–271

    Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415

    Article  CAS  Google Scholar 

  • Srivastava S, Mishra R, Tripathi D, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.). Royle Environ Sci Technol 41(8):2930–2936

    Article  CAS  Google Scholar 

  • Srivastava S, Mishra S, Dwivedi S, Tripathi R (2010) Role of thiol metabolism in arsenic detoxification in Hydrilla verticillata (L.f.) Royle. Water Air Soil Pollut 212:155–165

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava M, Suprasanna S, D’Souza F (2011) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37:1937–1941

    Article  Google Scholar 

  • Sun Q, Liu WB, Wang C (2011) Different response of phytochelatins in two aquatic macrophytes exposed to cadmium at environmentally relevant concentrations. Afr J Biotechnol 10(33):6292–6299

    CAS  Google Scholar 

  • Susanne A, Hendrik S (2008) Elodea nuttallii: uptake, translocation and release of phosphorus. Aquat Biol 3:209–216

    Article  Google Scholar 

  • Taghi ganji M, Khosravi M, Rakhshaee R (2005) Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. Int J Environ Sci Technol 1:265–271

    Google Scholar 

  • Taghi ganji M, Khosravi M, Rakhshaee R (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137

    Article  CAS  Google Scholar 

  • Tilaki RAD (2010) Effect of glucose and lactose on uptake of phenol by Lemna minor. Iran J Environ Health Sci Eng 7:123–128

    CAS  Google Scholar 

  • Todorovics C, Garay TM, Boltán BZ (2005) The use of the reed (Phragmites australis) in wastewater treatment on constructed wetlands. Acta Biologica Szegediensis 49(1–2):81–83

    Google Scholar 

  • Toetz DW (1971) Diurnal uptake of nitrogen trioxide [sic] and ammonium by a Ceratophyllum-periphyton community. Limnol Oceanogr 16:819–822

    Article  CAS  Google Scholar 

  • Tripathi RD, Rai UN, Gupta M, Chandra P (1996) Induction of phytochelatins in Hydrilla verticillata (l.f.) Royle under cadmium stress. Bull Environ Contam Toxicol 56:505–551

    Article  CAS  Google Scholar 

  • Tripathi RD, Rai UN, Vajpayee MB, Ali MB, Khan E, Gupta DK, Mishra S, Shukla MK, Singh SN (2003) Biochemical responses of Potamogeton pectinatus L. exposed to higher concentration of zinc. Bull Environ Contam Toxicol 71:255

    Article  CAS  Google Scholar 

  • Tront AM, Saunders FM (2006) Role of plant activity and contaminant speciation in aquatic plant assimilation of 2,4,5-trichlorophenol. Chemosphere 64(3):400–407

    Article  CAS  Google Scholar 

  • Tront JM, Day JA, Saunders MF (2001) Trichlorophenol removal with Lemna minor. In: Proceedings of the water environment federation, vol 40. WEFTEC, San Diego, p 929

    Google Scholar 

  • Tront JM, Reinhold DM, Bragg AW, Saunders FM (2007) Uptake of halogenated phenols by aquatic plants. J Environ Eng 133:955

    Article  CAS  Google Scholar 

  • Tukaj S, Bisewska J, Roeske K, Tukaj Z (2011) Time and dose dependent induction of HSP70 in Lemna minor exposed to different environmental stressors. Bull Environ Contam Toxicol 87(3):226–230

    Article  CAS  Google Scholar 

  • Upadhyay R, Panda SK (2010) Influence of chromium salts on increased lipid peroxidation and differential pattern in antioxidant metabolism in Pistia stratiotes L. Braz Arch Biol Technol 53:1137–1144

    Article  CAS  Google Scholar 

  • Uysal Y, Taner F (2011) The evaluation of the Pb(II) removal efficiency of duckweed Lemna minor from aquatic mediums at different conditions. In: Gökçekus H, Türker U, LaMoreaux JW (eds) Survival and sustainability environmental earth sciences. Springer, Berlin/Heidelberg, pp 1107–1116

    Google Scholar 

  • Venkatrayulu C, Rani VK, Reddy DC, Ramamurthi R (2009) Bio-adsorption of copper (II) by aquatic weed plants Hydrilla and Pistia. Asian J Animal Sci 4:82–85

    Google Scholar 

  • Vestena S, Cambraia J, Oliva MA, Oliveira JA (2007) Cadmium accumulation by water hyacinth and Salvinia under different sulfur concentrations. J Braz Soc Ecotoxicol 2:269–274

    Article  Google Scholar 

  • Vitória AP, Lage-Pinto F, Campaneli da Silva LB, da Cunha M, de Oliveira JG, Rezende CE, Magalhães de Souza CM, Azevedo RA (2011) Structural and ecophysiological alterations of the water hyacinth [Eichhornia crassipes (Mart.) Solms] due to anthropogenic stress in Brazilian Rivers. Braz Arch Biol Technol 54:1059–1068

    Article  CAS  Google Scholar 

  • Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR (1996) Parameters for removal of toxic heavy metals by water Milfoil (Myriophyllum spicatum). Bull Environ Contam Toxicol 57:779–786

    Article  CAS  Google Scholar 

  • Wang J, Gu Y, Zhu Z, Wu B, Yin D (2005) Physiological responses of Ceratophyllum demersum under different nutritional conditions. Ying Yong Sheng Tai Xue Bao 16(2):337–340

    CAS  Google Scholar 

  • Wang K, Huang L, Lee H, Chen P, Chang S (2008) Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. Chemosphere 72:666–672

    Article  CAS  Google Scholar 

  • Wang Q, Li Z, Cheng S, Wu Z (2010) Effects of humic acids on phytoextraction of Cu and Cd from sediment by Elodea nuttallii. Chemosphere 78:604–608

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685

    Article  CAS  Google Scholar 

  • Weltje L, Brouwer AH, Verburg TG, Wolterbeek HT, de Goeij JJM (2002) Accumulation and elimination of lanthanum by duckweed (Lemna minor L.) As influenced by organism growth and lanthanum sorption to glass. Environ Toxicol Chem 21:1483–1489

    CAS  Google Scholar 

  • Wilson PC, Whitwell T, Klaine SJ (2000) Metalaxyl and simazine toxicity to and uptake by Typha latifolia. Arch Environ Contam Toxicol 39:282–288

    Article  CAS  Google Scholar 

  • Win DT, Than MM, Tun S (2002) Iron removal from industrial waters by water hyacinth. Aust J Technol 6(2):55–60

    Google Scholar 

  • Win DT, Than MM, Tun S (2003) Lead removal from industrial waters by water hyacinth. Aust J Technol 6(4):187–192

    Google Scholar 

  • Windham L, Weis JS, Weis P (2001) Lead uptake, distribution and effects in two dominant salt marsh macrophytes Spartina alterniflora (cordgrass) and Phragmites australis (commonreed). Mar Pollut Bull 42:811

    Article  CAS  Google Scholar 

  • Windham L, Weis JS, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coast Shelf Sci 56:63

    Article  CAS  Google Scholar 

  • Wolf SD, Lassiter RR, Wooten SE (1991) Predicting chemical accumulation in shoots of aquatic plants. Environ Toxicol Chem 10:655

    Article  Google Scholar 

  • Wolff G, Pereira GC, Castro EM, Louzada J, Coelho FF (2012) The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration. Braz J Biol 72, doi.org/10.1590/S1519-69842012000100009

  • Wolverton BC, McDonald R (1979) The water hyacinth: from profilic pest to potential provider. Ambio 8:2–9

    Google Scholar 

  • Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth from water. Bioresour Technol 97:1050–1054

    Article  CAS  Google Scholar 

  • Xia J, Wu L, Tao Q (2002a) Phytoremediation of methyl parathion by water hyacinth (Eichhornia crassipes Solm.). Chem Abstr 137:155879

    Google Scholar 

  • Xia J, Wu L, Tao Q (2002b) Phytoremediation of some pesticides by water hyacinth (Eichhornia crassipes Solm.). Chem Abstr 138:390447

    Google Scholar 

  • Xing W, Li D, Liu G (2010) Antioxidative responses of Elodea nuttallii (Planch.) H. St. John to short-term iron exposure. Plant Physiol Biochem 48:873–878

    Article  CAS  Google Scholar 

  • Xue PY, Li GX, Liu WJ, Yan CZ (2010) Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Chemosphere 81(9):1098–1103

    Article  CAS  Google Scholar 

  • Xue P, Yan C, Sun G, Luo Z (2012) Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum L. Environ Sci Pollut Res Int 19:3969–3976

    Article  CAS  Google Scholar 

  • Yadav SB, Jadhav AS, Chonde SG, Raut PD (2011) Performance evaluation of surface flow constructed wetland system by using Eichhornia crassipes for wastewater treatment in an institutional complex. Univ J Environ Res Technol 1:435–444

    CAS  Google Scholar 

  • Yang Q, Chen ZH, Zhao JG, Gu BH (2007) Contaminant removal of domestic wastewater by constructed wetlands: effects of plant species. J Integr Plant Biol 49(4):437–446

    Article  CAS  Google Scholar 

  • Ye ZH, Baker AJM, Wong MH, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol 136:469

    Article  CAS  Google Scholar 

  • Ye ZH, Cheung KC, Wong MH (2001) Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface. Can J Bot 79:314–320

    CAS  Google Scholar 

  • Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants, I: Duckweed. J Environ Qual 27:715

    Article  CAS  Google Scholar 

  • Zayed A, Pilon-Smits E, de Souza M, Lin ZQ, Terry N (2000) Remediation of selenium polluted soils and waters by phytovolatilization. In: Terry N, Barnuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, p 61

    Google Scholar 

  • Zhang X, Lin AJ, Zhao FJ, Xu GZ, Duan GL, Zhu YG (2008a) Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by Azolla caroliniana and Azolla filiculoides. Environ Pollut 156:1149–1155

    Article  CAS  Google Scholar 

  • Zhang Z, Wu Z, Li H (2008b) The accumulation of alkylphenols in submersed plants in spring in urban lake, China. Chemosphere 73:859–863

    Article  CAS  Google Scholar 

  • Zhang X, Hu Y, Liu Y, Chen B (2011) Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). J Environ Sci (China) 23(4):601–606

    Article  CAS  Google Scholar 

  • Zhu YL, Zayed AM, Qian JH, Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants. II water hyacinth (Eichhornia crassipes). J Environ Qual 28:339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The pictures and data acquired from website Google are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Dhir, B. (2013). Aquatic Plant Species and Removal of Contaminants. In: Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. Springer, India. https://doi.org/10.1007/978-81-322-1307-9_2

Download citation

Publish with us

Policies and ethics