An Effective Segmentation Approach for Lung CT Images Using Histogram Thresholding with EMD Refinement

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 216)


Image segmentation is an important step in extracting information from medical images. Segmentation of pulmonary chest computed tomography (CT) images is a precursor to most pulmonary image analysis. The purpose of lung segmentation is to separate the voxels corresponding to lung tissue from the surrounding anatomy. This paper presents an automated CT lung image segmentation. The approach utilizes histogram-based thresholding with Earth Mover’s Distance (HTEMD)-based refinement methods. The final segmented output is further refined by morphological operators. The performance of HTEMD is compared with Otsu’s, K-Means, and histogram thresholding using fuzzy measures.


Computed tomography Lung nodule Earth mover’s distance Histogram thresholding 


  1. 1.
    Cao, W., Yan, Y., Li, S.: Unsupervised color-texture image segmentation based on a new clustering method. J. Next Gener. Inform. Technol. 1(2), 784–787 (2010)Google Scholar
  2. 2.
    Armato, S.G., Sensakovic, W.F. Automated lung segmentation for thoracic CT. Acad. Radiol. 11(9), 1011–1021 (2004)Google Scholar
  3. 3.
    Garnavi, R., Baraani-Dastjerdi, A., Abrishami Moghaddam H, 2005, A new segmentation method for lung HRCT images. In: Proceedings of the Digital Imaging Computing: Techniques and Applications, p. 8. IEEE CS Press, Cairns Convention Centre, Brisbane, Australia. doi: 10.1109/DICTA.2005.5
  4. 4.
    Ye, X., Lin, X., Dehmeshki, J., Slabaugh, G., Beddoe, G.: Shape-based computer-aided detection of lung nodules in thoracic CT Images. IEEE Trans. Biomed. Eng. 56(7) 1810–1820 (2009)Google Scholar
  5. 5.
    Faizal Khan, Z., Kavitha, V.: Pulmonary lung segmentation in computer tomography using fuzzy logic. Eur. J. Sci. Res. 81(3), 329–337 (2012)Google Scholar
  6. 6.
    Park S.C., Kim W.P., Zheng B., Leader J.K., Pu J., and Gur D.: Pulmonary airway tree segmentation from CT examinations using adaptive volume of interest. Proc. SPIE Med. Imag. 7259, 72593U-1–72593U-9 (2009)Google Scholar
  7. 7.
    Lopes, N.V., Mogadouro do Couto, P.A., and Bustince, H.: Automatic histogram threshold using fuzzy measures. IEEE Trans. Image Process. 19(1), 199–204 (2010)Google Scholar
  8. 8.
    Adam, A., Kimmel, R., Rivlin, E.: On scene segmentation and histograms-based curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1708–1714 (2009)Google Scholar
  9. 9.
    Zheng, B., Leader, J.K., Maitz, G.S., Chapman, B.E., Fuhrman, C.R., Rogers, R.M., Sciurba, F.C., Perez, A., Thompson, P., Good, W.F., Gur, D.: A simple method for automated lung segmentation in X-ray CT images. Proc. SPIE 5032, 1455–1463 (2003)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Research Scholar, Anna University of TechnologyTirunelveliIndia
  2. 2.Department of Computer Science and EngineeringAnna University of TechnologyTirunelveliIndia

Personalised recommendations