Implementation of Radial Basis Function Network in Content-Based Video Retrieval

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 216)

Abstract

This paper presents retrieving a video from a given database using radial basis function (RBF) network method. The features of the videos are used by RBF for training and testing RBF in the algorithm developed. The features of frames of a video are extracted from the contents in the form of text, audio, and image. In this analysis, RBF is programmed to retrieve the words spoken by four different speakers in video presentation.

Keywords

Content-based retrieval Radial basis function Video retrieval 

References

  1. 1.
    Erol, B., Kossentini, F.: Automatic key video object plane selection using the shape information in the Mpeg-4 compressed domain. IEEE Trans. Multimedia 2(2), 129–138 (2000)Google Scholar
  2. 2.
    Tsekeridou, S., Pitas, I.: Content-based video parsing and indexing based on audio–visual interaction. IEEE Trans. Circuits Syst. Video Technol. 11(4), 522–535 (2001)CrossRefGoogle Scholar
  3. 3.
    Holmes, J.N., Holmes, W.J.: Speech Synthesis and Recognition, 2nd ed. Taylor & Francis, London (2001)Google Scholar
  4. 4.
    Liu M., Wan C.: A study on content-based classification and retrieval of audio database. In: Proceedings of International Database Engineering and Applications Symposium, Grenoble, France. IEEE Comput. Soc., Washington DC pp. 339–345 (2001) Google Scholar
  5. 5.
    Naphade, M.R., Huang, T.S.: A probabilistic framework for semantic video indexing, filtering, and retrieval. IEEE Trans. Multimedia 3(1), 141–151 (2001)CrossRefGoogle Scholar
  6. 6.
    Slaney M.: Mixtures of probability experts for audio retrieval and indexing. In: Proceedings of IEEE International Conference on Multimedia and Expo, Goteborg, Sweden, vol. 1, pp. 345–348 (2002)Google Scholar
  7. 7.
    Adams, W.H., Iyengar, G., Lin, C.Y., Naphade M.R., Neti, C., Nock, H.J., Smith J.R.: Semantic indexing of multimedia using audio, text and visual cues, EURASIP J. Appl. Signal Process. 2, 170–185 (2003) Google Scholar
  8. 8.
    Fang, H., Qahwaji, R., Jiang, J.: Video indexing and retrieval in compressed domain using fuzzy-categorization, ISCV 2006, LNCS 4292, Springer-Verlag Berlin Heidelberg, pp. 1143–150 (2006)Google Scholar
  9. 9.
    Benmokhtar, R., Huet, B.: Neural network combining classifier based on Dempster-Shafer theory. In: Proceedings of the International Multiconference on Computer Science and Information Technology, Singapore, pp. 3–10 (2006)Google Scholar
  10. 10.
    Snoek, C.G.M., Huurnink, B., Hollink, L., De Rijke, M., Schreiber, G., Worring, M.: Adding semantics to detectors for video retrieval. IEEE Trans. Multimedia 9(5), 975–986 (2007) Google Scholar
  11. 11.
    Lu, H., Xue, X., Tan, Y.-P.: Content-Based Image and Video Indexing and Retrieval, pp. 118–129. Springer Verlag, Berlin Heidelberg (2007) Google Scholar
  12. 12.
    Gao, L., Li, Z., Katsaggelos, A.: An efficient video indexing and retrieval algorithm using the luminance field trajectory modeling. IEEE Trans. Circuits Syst. Video Technol., 19(10), 1566–1570 (2009)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of MCAVELS UniversityChennaiIndia
  2. 2.PET Engineering CollegeTirunelveliIndia
  3. 3.Research Scholar Mother Teresa Women’s University KodaikanalKodaikanalIndia

Personalised recommendations