Skip to main content

Pharmacogenomics and Personalized Medicine of the Antiplatelet Drugs

  • Chapter
  • First Online:
Omics for Personalized Medicine
  • 1914 Accesses

Abstract

Platelet activation and aggregation play a critical role in hemostasis and thrombosis. There is a fast-growing list of the antiplatelet drugs that are either marketed or under development, of which combination of aspirin and clopidogrel is now the standard of care for acute coronary syndromes or percutaneous coronary intervention for stenting. Overwhelming data have well demonstrated that aspirin monotherapy can greatly improve patient outcomes by irreversible suppression of the cyclooxygenase-1 enzyme responsible for the arachidonic acid pathway, that clopidogrel can exert its well-documented platelet inhibition through irreversible blockade of the platelet ADP receptor P2Y12, and that dual antiplatelet therapy (aspirin plus clopidogrel) is clinically more effective than either of the two for the secondary prevention of the recurrence of myocardial infarction, in-stent thrombosis, ischemic stroke, or even death. However, individuals may vary in their response to the drug, characterized by less or no response to either one or both in some patients when taking the same doses. It is well known that almost all genetic and nongenetic factors may contribute to that variation as summarized in this book chapter, and that DNA or pharmacogenomics is not the whole story about personalized medicine. The future landscape of optimal drug therapy would be much clearer over time and thus more attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy DR (1997) Grapefruits and drugs: when is statistically significant clinically significant? J Clin Invest 99:2297–2298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adedoyin A, Arns PA, Richards WO, Wilkinson GR, Branch RA (1998) Selective effect of liver disease on the activities of specific metabolizing enzymes: investigation of cytochromes P450 2C19 and 2D6. Clin Pharmacol Ther 64:8–17

    CAS  PubMed  Google Scholar 

  • Afshar-Kharghan V, Li CQ, Khoshnevis-Asl M, Lopez JA (1999) Kozak sequence polymorphism of the glycoprotein (GP) Ibalpha gene is a major determinant of the plasma membrane levels of the platelet GP Ib-IX-V complex. Blood 94:186–191

    CAS  PubMed  Google Scholar 

  • Ajzenberg N, Berroeta C, Philip I, Grandchamp B, Ducellier P, Huart V et al (2005) Association of the -92C/G and 807C/T polymorphisms of the alpha2 subunit gene with human platelets alpha2beta1 receptor density. Arterioscler Thromb Vasc Biol 25:1756–1760

    CAS  PubMed  Google Scholar 

  • Aleil B, Leon C, Cazenave JP, Gachet C (2009) CYP2C19*2 polymorphism is not the sole determinant of the response to clopidogrel: implications for its monitoring. J Thromb Haemost 7:1747–1749

    CAS  PubMed  Google Scholar 

  • Ameyaw MM, Regateiro F, Li T, Liu X, Tariq M, Mobarek A et al (2001) MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 11:217–221

    CAS  PubMed  Google Scholar 

  • Ancrenaz V, Desmeules J, James R, Fontana P, Reny JL, Dayer P et al (2012) The paraoxonase-1 pathway is not a major bioactivation pathway of clopidogrel in vitro. Br J Pharmacol 166:2362–2370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE Jr et al (2007) ACC/AHA 2007 guidelines for the management of patients with unstable angina/non ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non ST-Elevation Myocardial Infarction): developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons: endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. Circulation 116:e148–e304

    PubMed  Google Scholar 

  • Angiolillo DJ (2012) The evolution of antiplatelet therapy in the treatment of acute coronary syndromes: from aspirin to the present day. Drugs 72:2087–2116

    CAS  PubMed  Google Scholar 

  • Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Alfonso F, Sabate M, Fernandez C et al (2004a) PlA polymorphism and platelet reactivity following clopidogrel loading dose in patients undergoing coronary stent implantation. Blood Coagul Fibrinolysis 15:89–93

    PubMed  Google Scholar 

  • Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Ramirez C, Escaned J, Moreno R et al (2004b) 807 C/T Polymorphism of the glycoprotein Ia gene and pharmacogenetic modulation of platelet response to dual antiplatelet treatment. Blood Coagul Fibrinolysis 15:427–433

    CAS  PubMed  Google Scholar 

  • Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Ramirez C, Barrera-Ramirez C, Sabate M et al (2005a) Identification of low responders to a 300-mg clopidogrel loading dose in patients undergoing coronary stenting. Thromb Res 115:101–108

    CAS  PubMed  Google Scholar 

  • Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Ramirez C, Cavallari U, Trabetti E et al (2005b) Lack of association between the P2Y12 receptor gene polymorphism and platelet response to clopidogrel in patients with coronary artery disease. Thromb Res 116:491–497

    CAS  PubMed  Google Scholar 

  • Angiolillo DJ, Bernardo E, Ramirez C, Costa MA, Sabate M, Jimenez-Quevedo P et al (2006a) Insulin therapy is associated with platelet dysfunction in patients with type 2 diabetes mellitus on dual oral antiplatelet treatment. J Am Coll Cardiol 48:298–304

    CAS  PubMed  Google Scholar 

  • Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Ramirez C, Cavallari U, Trabetti E et al (2006b) Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel. Arterioscler Thromb Vasc Biol 26:1895–1900

    CAS  PubMed  Google Scholar 

  • Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Alfonso F, Macaya C, Bass TA et al (2007) Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. J Am Coll Cardiol 49:1505–1516

    CAS  PubMed  Google Scholar 

  • Anonymous (2010a) FDA drug safety communication: reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug. Available at: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm203888.htm

  • Anonymous (2010b) Grapefruit-drug interactions. Available at: http://www.powernetdesign.com/grapefruit/

  • Anonymous (2010c) Plavix prescribing information. Available at: http://products.sanofi-aventis.us/plavix/plavix.html

  • Ansara AJ, Nisly SA, Arif SA, Koehler JM, Nordmeyer ST (2010) Aspirin dosing for the prevention and treatment of ischemic stroke: an indication-specific review of the literature. Ann Pharmacother 44:851–862

    CAS  PubMed  Google Scholar 

  • Antman EM, Hand M, Armstrong PW, Bates ER, Green LA, Halasyamani LK et al (2008a) 2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: developed in collaboration With the Canadian Cardiovascular Society endorsed by the American Academy of Family Physicians: 2007 Writing Group to Review New Evidence and Update the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction, Writing on Behalf of the 2004 Writing Committee. Circulation 117:296–329

    PubMed  Google Scholar 

  • Antman EM, Hand M, Armstrong PW, Bates ER, Green LA, Halasyamani LK et al (2008b) 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 51:210–247

    PubMed  Google Scholar 

  • Armstrong PC, Peter K (2012) GPIIb/IIIa inhibitors: from bench to bedside and back to bench again. Thromb Haemost 107:808–814

    CAS  PubMed  Google Scholar 

  • Aukrust P, Halvorsen B, Ueland T, Michelsen AE, Skjelland M, Gullestad L et al (2010) Activated platelets and atherosclerosis. Expert Rev Cardiovasc Ther 8:1297–1307

    PubMed  Google Scholar 

  • Badr ER, Lang IM, Koppensteiner R, Calatzis A, Panzer S, Gremmel T (2012) Residual platelet activation through protease-activated receptors (PAR)-1 and −4 in patients on P2Y12 inhibitors. Int J Cardiol doi:10.1016/j.ijcard.2012.09.103

    Google Scholar 

  • Bailey DG, Dresser GK (2004) Interactions between grapefruit juice and cardiovascular drugs. Am J Cardiovasc Drugs 4:281–297

    CAS  PubMed  Google Scholar 

  • Balram C, Sharma A, Sivathasan C, Lee EJ (2003) Frequency of C3435T single nucleotide MDR1 genetic polymorphism in an Asian population: phenotypic-genotypic correlates. Br J Clin Pharmacol 56:78–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bauer T, Gitt AK, Junger C, Zahn R, Koeth O, Towae F et al (2010) Guideline-recommended secondary prevention drug therapy after acute myocardial infarction: predictors and outcomes of nonadherence. Eur J Cardiovasc Prev Rehabil 17:576–581

    PubMed  Google Scholar 

  • Bergandi L, Cordero M, Anselmino M, Ferraro G, Ravera L, Dalmasso P et al (2010) Altered nitric oxide/cGMP platelet signaling pathway in platelets from patients with acute coronary syndromes. Clin Res Cardiol 99:557–564

    CAS  PubMed  Google Scholar 

  • Bernlochner I, Steinhubl S, Braun S, Morath T, Jaitner J, Stegherr J et al (2010) Association between inflammatory biomarkers and platelet aggregation in patients under chronic clopidogrel treatment. Thromb Haemost 104:1193–1200

    CAS  PubMed  Google Scholar 

  • Bertrand ME, Rupprecht HJ, Urban P, Gershlick AH (2000) Double-blind study of the safety of clopidogrel with and without a loading dose in combination with aspirin compared with ticlopidine in combination with aspirin after coronary stenting: the clopidogrel aspirin stent international cooperative study (CLASSICS). Circulation 102:624–629

    CAS  PubMed  Google Scholar 

  • Bhatt DL (2008) What makes platelets angry: diabetes, fibrinogen, obesity, and impaired response to antiplatelet therapy? J Am Coll Cardiol 52:1060–1061

    PubMed  Google Scholar 

  • Bhatt DL (2009) Tailoring antiplatelet therapy based on pharmacogenomics: how well do the data fit? JAMA 302:896–897

    CAS  PubMed  Google Scholar 

  • Bhatt DL, Scheiman J, Abraham NS, Antman EM, Chan FK, Furberg CD et al (2008) ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. Circulation 118:1894–1909

    PubMed  Google Scholar 

  • Bhindi R, Ormerod O, Newton J, Banning AP, Testa L (2008) Interaction between statins and clopidogrel: is there anything clinically relevant? QJM 101:915–925

    CAS  PubMed  Google Scholar 

  • Bliden KP, DiChiara J, Lawal L, Singla A, Antonino MJ, Baker BA et al (2008) The association of cigarette smoking with enhanced platelet inhibition by clopidogrel. J Am Coll Cardiol 52:531–533

    CAS  PubMed  Google Scholar 

  • Bobbert P, Stellbaum C, Steffens D, Schutte C, Bobbert T, Schultheiss HP et al (2012) Postmenopausal women have an increased maximal platelet reactivity compared to men despite dual antiplatelet therapy. Blood Coagul Fibrinolysis 23:723–728

    CAS  PubMed  Google Scholar 

  • Bonello L, Camoin-Jau L, Mancini J, Bessereau J, Grosdidier C, Alessi MC et al (2012) Factors associated with the failure of clopidogrel dose-adjustment according to platelet reactivity monitoring to optimize P2Y12-ADP receptor blockade. Thromb Res 130:70–74

    CAS  PubMed  Google Scholar 

  • Bonello-Palot N, Armero S, Paganelli F, Mancini J, De Labriolle A, Bonello C et al (2009) Relation of body mass index to high on-treatment platelet reactivity and of failed clopidogrel dose adjustment according to platelet reactivity monitoring in patients undergoing percutaneous coronary intervention. Am J Cardiol 104:1511–1515

    CAS  PubMed  Google Scholar 

  • Bordeaux BC, Qayyum R, Yanek LR, Vaidya D, Becker LC, Faraday N et al (2010) Effect of obesity on platelet reactivity and response to low-dose aspirin. Prev Cardiol 13:56–62

    CAS  PubMed  Google Scholar 

  • Bouman HJ, Schomig E, van Werkum JW, Velder J, Hackeng CM, Hirschhauser C et al (2011) Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med 17:110–116

    CAS  PubMed  Google Scholar 

  • Brandt JT, Close SL, Iturria SJ, Payne CD, Farid NA, Ernest CS et al (2007a) Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 5:2429–2436

    CAS  PubMed  Google Scholar 

  • Brandt JT, Payne CD, Wiviott SD, Weerakkody G, Farid NA, Small DS et al (2007b) A comparison of prasugrel and clopidogrel loading doses on platelet function: magnitude of platelet inhibition is related to active metabolite formation. Am Heart J 153:66–76

    CAS  PubMed  Google Scholar 

  • Buonamici P, Marcucci R, Migliorini A, Gensini GF, Santini A, Paniccia R et al (2007) Impact of platelet reactivity after clopidogrel administration on drug-eluting stent thrombosis. J Am Coll Cardiol 49:2312–2317

    CAS  PubMed  Google Scholar 

  • Caplain H, Donat F, Gaud C, Necciari J (1999) Pharmacokinetics of clopidogrel. Semin Thromb Hemost 25(Suppl 2):25–28

    CAS  PubMed  Google Scholar 

  • Capodanno D, Bhatt DL, Goto S, O’Donoghue ML, Moliterno DJ, Tamburino C et al (2012) Safety and efficacy of protease-activated receptor-1 antagonists in patients with coronary artery disease: a meta-analysis of randomized clinical trials. J Thromb Haemost 10:2006–2015

    CAS  PubMed  Google Scholar 

  • Cattaneo M, Zighetti ML, Lombardi R, Martinez C, Lecchi A, Conley PB et al (2003) Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding. Proc Natl Acad Sci U S A 100:1978–1983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZM, Jiang LX, Chen YP, Xie JX, Pan HC, Peto R et al (2005) Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 366:1607–1621

    CAS  PubMed  Google Scholar 

  • Chen M, Ma L, Drusano GL, Bertino JS Jr, Nafziger AN (2006) Sex differences in CYP3A activity using intravenous and oral midazolam. Clin Pharmacol Ther 80:531–538

    CAS  PubMed  Google Scholar 

  • Chen BL, Chen Y, Tu JH, Li YL, Zhang W, Li Q et al (2009) Clopidogrel inhibits CYP2C19-dependent hydroxylation of omeprazole related to CYP2C19 genetic polymorphisms. J Clin Pharmacol 49:574–581

    CAS  PubMed  Google Scholar 

  • Chen CY, Poole EM, Ulrich CM, Kulmacz RJ, Wang LH (2012) Functional analysis of human thromboxane synthase polymorphic variants. Pharmacogenet Genomics 22:653–658

    PubMed  Google Scholar 

  • Clarke TA, Waskell LA (2003) The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metab Dispos 31:53–59

    CAS  PubMed  Google Scholar 

  • Collet JP, Hulot JS, Pena A, Villard E, Esteve JB, Silvain J et al (2009) Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 373:309–317

    CAS  PubMed  Google Scholar 

  • Collet JP, Cuisset T, Range G, Cayla G, Elhadad S, Pouillot C et al (2012) Bedside monitoring to adjust antiplatelet therapy for coronary stenting. N Engl J Med 367:2100–2109

    CAS  PubMed  Google Scholar 

  • Collins SD, Torguson R, Gaglia MA Jr, Lemesle G, Syed AI, Ben Dor I et al (2010) Does black ethnicity influence the development of stent thrombosis in the drug-eluting stent era? Circulation 122:1085–1090

    PubMed  Google Scholar 

  • Connolly SJ, Pogue J, Hart RG, Hohnloser SH, Pfeffer M, Chrolavicius S et al (2009) Effect of clopidogrel added to aspirin in patients with atrial fibrillation. N Engl J Med 360:2066–2078

    PubMed  Google Scholar 

  • Cuisset T, Frere C, Quilici J, Barbou F, Morange PE, Hovasse T et al (2006) High post-treatment platelet reactivity identified low-responders to dual antiplatelet therapy at increased risk of recurrent cardiovascular events after stenting for acute coronary syndrome. J Thromb Haemost 4:542–549

    CAS  PubMed  Google Scholar 

  • Cuisset T, Frere C, Quilici J, Morange PE, Saut N, Lambert M et al (2007) Role of the T744C polymorphism of the P2Y12 gene on platelet response to a 600-mg loading dose of clopidogrel in 597 patients with non-ST-segment elevation acute coronary syndrome. Thromb Res 120:893–899

    CAS  PubMed  Google Scholar 

  • d’Esposito F, Nebot N, Edwards RJ, Murray M (2010) Impaired irinotecan biotransformation in hepatic microsomal fractions from patients with chronic liver disease. Br J Clin Pharmacol 70:400–408

    PubMed Central  PubMed  Google Scholar 

  • Davi G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357:2482–2494

    CAS  PubMed  Google Scholar 

  • Davi G, Guagnano MT, Ciabattoni G, Basili S, Falco A, Marinopiccoli M et al (2002) Platelet activation in obese women: role of inflammation and oxidant stress. JAMA 288:2008–2014

    CAS  PubMed  Google Scholar 

  • Debrunner M, Schuiki E, Minder E, Straumann E, Naegeli B, Mury R et al (2008) Proinflammatory cytokines in acute myocardial infarction with and without cardiogenic shock. Clin Res Cardiol 97:298–305

    CAS  PubMed  Google Scholar 

  • Ding Z, Kim S, Dorsam RT, Jin J, Kunapuli SP (2003) Inactivation of the human P2Y12 receptor by thiol reagents requires interaction with both extracellular cysteine residues, Cys17 and Cys270. Blood 101:3908–3914

    CAS  PubMed  Google Scholar 

  • Ding XL, Xie C, Miao LY (2012) Effects of CYP2C19 *2 and *3 as well as CES1A2 -816A/C genetic polymorphisms on clopidogrel-mediated platelet aggregation. In: The 13rd national meeting of Chinese Society for Clinical Pharmacology, Chengdu, October 26–28, pp 186 (abstract)

    Google Scholar 

  • Dinicolantonio JJ, Serebruany VL (2012) Angiotensin receptor blockers worsen renal function and dyspnea on ticagrelor: a potential ticagrelor-angiotensin receptor blocker interaction? Clin Cardiol 36:647–648

    Google Scholar 

  • Dorsam RT, Kunapuli SP (2004) Central role of the P2Y12 receptor in platelet activation. J Clin Invest 113:340–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erlinge D, Varenhorst C, Braun OO, James S, Winters KJ, Jakubowski JA et al (2008) Patients with poor responsiveness to thienopyridine treatment or with diabetes have lower levels of circulating active metabolite, but their platelets respond normally to active metabolite added ex vivo. J Am Coll Cardiol 52:1968–1977

    CAS  PubMed  Google Scholar 

  • Farid NA, Payne CD, Small DS, Winters KJ, Ernest CS, Brandt JT et al (2007) Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin Pharmacol Ther 81:735–741

    CAS  PubMed  Google Scholar 

  • Fatini C, Sticchi E, Bolli P, Marcucci R, Giusti B, Paniccia R et al (2009) eNOS gene influences platelet phenotype in acute coronary syndrome patients on dual antiplatelet treatment. Platelets 20:548–554

    CAS  PubMed  Google Scholar 

  • Feher G, Koltai K, Alkonyi B, Papp E, Keszthelyi Z, Kesmarky G et al (2007) Clopidogrel resistance: role of body mass and concomitant medications. Int J Cardiol 120:188–192

    PubMed  Google Scholar 

  • Feit F, Voeltz MD, Attubato MJ, Lincoff AM, Chew DP, Bittl JA et al (2007) Predictors and impact of major hemorrhage on mortality following percutaneous coronary intervention from the REPLACE-2 Trial. Am J Cardiol 100:1364–1369

    PubMed  Google Scholar 

  • Feliste R, Delebassee D, Simon MF, Chap H, Defreyn G, Vallee E et al (1987) Broad spectrum anti-platelet activity of ticlopidine and PCR 4099 involves the suppression of the effects of released ADP. Thromb Res 48:403–415

    CAS  PubMed  Google Scholar 

  • Fichtlscherer S, Dimmeler S, Breuer S, Busse R, Zeiher AM, Fleming I (2004) Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation 109:178–183

    CAS  PubMed  Google Scholar 

  • Flood VH, Gill JC, Morateck PA, Christopherson PA, Friedman KD, Haberichter SL et al (2010) Common VWF exon 28 polymorphisms in African Americans affecting the VWF activity assay by ristocetin cofactor. Blood 116:280–286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fontana P, Dupont A, Gandrille S, Bachelot-Loza C, Reny JL, Aiach M et al (2003) Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 108:989–995

    CAS  PubMed  Google Scholar 

  • Fontana P, Hulot JS, De Moerloose P, Gaussem P (2007) Influence of CYP2C19 and CYP3A4 gene polymorphisms on clopidogrel responsiveness in healthy subjects. J Thromb Haemost 5:2153–2155

    CAS  PubMed  Google Scholar 

  • Fontana P, Berdague P, Castelli C, Nolli S, Barazer I, Fabbro-Peray P et al (2010) Clinical predictors of dual aspirin and clopidogrel poor responsiveness in stable cardiovascular patients from the ADRIE study. J Thromb Haemost 8:2614–2623

    CAS  PubMed  Google Scholar 

  • Frere C, Cuisset T, Morange PE, Quilici J, Camoin-Jau L, Saut N et al (2008) Effect of cytochrome p450 polymorphisms on platelet reactivity after treatment with clopidogrel in acute coronary syndrome. Am J Cardiol 101:1088–1093

    CAS  PubMed  Google Scholar 

  • Friedman DJ, Talbert ME, Bowden DW, Freedman BI, Mukanya Y, Enjyoji K et al (2009) Functional ENTPD1 polymorphisms in African Americans with diabetes and end-stage renal disease. Diabetes 58:999–1006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganesan S, Williams C, Maslen CL, Cherala G (2013) Clopidogrel variability: role of plasma protein binding alterations. Br J Clin Pharmacol 75:1468–1477

    Google Scholar 

  • Geiger J, Brich J, Honig-Liedl P, Eigenthaler M, Schanzenbacher P, Herbert JM et al (1999) Specific impairment of human platelet P2Y(AC) ADP receptor-mediated signaling by the antiplatelet drug clopidogrel. Arterioscler Thromb Vasc Biol 19:2007–2011

    CAS  PubMed  Google Scholar 

  • Geisler T, Langer H, Wydymus M, Gohring K, Zurn C, Bigalke B et al (2006) Low response to clopidogrel is associated with cardiovascular outcome after coronary stent implantation. Eur Heart J 27:2420–2425

    CAS  PubMed  Google Scholar 

  • Geisler T, Grass D, Bigalke B, Stellos K, Drosch T, Dietz K et al (2008a) The residual platelet aggregation after deployment of intracoronary stent (PREDICT) score. J Thromb Haemost 6:54–61

    CAS  PubMed  Google Scholar 

  • Geisler T, Schaeffeler E, Dippon J, Winter S, Buse V, Bischofs C et al (2008b) CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics 9:1251–1259

    CAS  PubMed  Google Scholar 

  • George J, Murray M, Byth K, Farrell GC (1995) Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology 21:120–128

    CAS  PubMed  Google Scholar 

  • Gilard M, Arnaud B, Le Gal G, Abgrall JF, Boschat J (2006) Influence of omeprazol on the antiplatelet action of clopidogrel associated to aspirin. J Thromb Haemost 4:2508–2509

    CAS  PubMed  Google Scholar 

  • Giusti B, Gori AM, Marcucci R, Saracini C, Sestini I, Paniccia R et al (2007) Cytochrome P450 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10 + 12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients. Pharmacogenet Genomics 17:1057–1064

    CAS  PubMed  Google Scholar 

  • Giusti B, Gori AM, Marcucci R, Sestini I, Saracini C, Paniccia R et al (2008) Role of glycoprotein Ia gene polymorphisms in determining platelet function in myocardial infarction patients undergoing percutaneous coronary intervention on dual antiplatelet treatment. Atherosclerosis 196:341–348

    CAS  PubMed  Google Scholar 

  • Giusti B, Gori AM, Marcucci R, Saracini C, Sestini I, Paniccia R et al (2009) Relation of cytochrome P450 2C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis. Am J Cardiol 103:806–811

    CAS  PubMed  Google Scholar 

  • Gong IY, Crown N, Suen CM, Schwarz UI, Dresser GK, Knauer MJ et al (2012) Clarifying the importance of CYP2C19 and PON1 in the mechanism of clopidogrel bioactivation and in vivo antiplatelet response. Eur Heart J 33:2856–2864

    CAS  PubMed  Google Scholar 

  • Gonzales RJ, Ghaffari AA, Duckles SP, Krause DN (2005) Testosterone treatment increases thromboxane function in rat cerebral arteries. Am J Physiol Heart Circ Physiol 289:H578–H585

    CAS  PubMed  Google Scholar 

  • Gurbel PA, Anderson RD (1997) New concept in coronary angioplasty: dilatation with a helical balloon that allows simultaneous autoperfusion. Cathet Cardiovasc Diagn 40:109–116

    CAS  PubMed  Google Scholar 

  • Gurbel PA, Tantry US (2006) Drug insight: clopidogrel nonresponsiveness. Nat Clin Pract Cardiovasc Med 3:387–395

    CAS  PubMed  Google Scholar 

  • Gurbel PA, Bliden KP, Hiatt BL, O’Connor CM (2003) Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 107:2908–2913

    PubMed  Google Scholar 

  • Gurbel PA, Bliden KP, Guyer K, Cho PW, Zaman KA, Kreutz RP et al (2005a) Platelet reactivity in patients and recurrent events post-stenting: results of the PREPARE POST-STENTING Study. J Am Coll Cardiol 46:1820–1826

    CAS  PubMed  Google Scholar 

  • Gurbel PA, Bliden KP, Hayes KM, Yoho JA, Herzog WR, Tantry US (2005b) The relation of dosing to clopidogrel responsiveness and the incidence of high post-treatment platelet aggregation in patients undergoing coronary stenting. J Am Coll Cardiol 45:1392–1396

    CAS  PubMed  Google Scholar 

  • Gurbel PA, Bliden KP, Samara W, Yoho JA, Hayes K, Fissha MZ et al (2005c) Clopidogrel effect on platelet reactivity in patients with stent thrombosis: results of the CREST Study. J Am Coll Cardiol 46:1827–1832

    CAS  PubMed  Google Scholar 

  • Gurbel PA, Lau WC, Tantry US (2008) Omeprazole: a possible new candidate influencing the antiplatelet effect of clopidogrel. J Am Coll Cardiol 51:261–263

    PubMed  Google Scholar 

  • Guzauskas GF, Hughes DA, Bradley SM, Veenstra DL (2012) A risk-benefit assessment of prasugrel, clopidogrel, and genotype-guided therapy in patients undergoing percutaneous coronary intervention. Clin Pharmacol Ther 91:829–837

    CAS  PubMed  Google Scholar 

  • Hagihara K, Nishiya Y, Kurihara A, Kazui M, Farid NA, Ikeda T (2008) Comparison of human cytochrome P450 inhibition by the thienopyridines prasugrel, clopidogrel, and ticlopidine. Drug Metab Pharmacokinet 23:412–420

    CAS  PubMed  Google Scholar 

  • Hanley MJ, Abernethy DR, Greenblatt DJ (2010) Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 49:71–87

    CAS  PubMed  Google Scholar 

  • Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    CAS  PubMed  Google Scholar 

  • Harmsze AM, van Werkum JW, ten Berg JM, Hackeng CM, Deneer VH (2009) Concomitant use of sulfonylurea antidiabetics attenuates on-clopidogrel platelet reactivity. Circulation 120:S501 (abstract)

    Google Scholar 

  • Harmsze A, van Werkum JW, Bouman HJ, Ruven HJ, Breet NJ, ten Berg JM et al (2010) Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation. Pharmacogenet Genomics 20:18–25

    CAS  PubMed  Google Scholar 

  • Hasan MS, Basri HB, Hin LP, Stanslas J (2013) Genetic polymorphisms and drug interactions leading to clopidogrel resistance: why the Asian population requires special attention. Int J Neurosci 123:143–154

    CAS  PubMed  Google Scholar 

  • Hechler B, Zhang Y, Eckly A, Cazenave JP, Gachet C, Ravid K (2003) Lineage-specific overexpression of the P2Y1 receptor induces platelet hyper-reactivity in transgenic mice. J Thromb Haemost 1:155–163

    CAS  PubMed  Google Scholar 

  • Helton TJ, Bavry AA, Kumbhani DJ, Duggal S, Roukoz H, Bhatt DL (2007) Incremental effect of clopidogrel on important outcomes in patients with cardiovascular disease: a meta-analysis of randomized trials. Am J Cardiovasc Drugs 7:289–297

    CAS  PubMed  Google Scholar 

  • Herbert JM, Savi P (2003) P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin Vasc Med 3:113–122

    PubMed  Google Scholar 

  • Hermosillo AJ, Spinler SA (2008) Aspirin, clopidogrel, and warfarin: is the combination appropriate and effective or inappropriate and too dangerous? Ann Pharmacother 42:790–805

    CAS  PubMed  Google Scholar 

  • Hetherington SL, Singh RK, Lodwick D, Thompson JR, Goodall AH, Samani NJ (2005) Dimorphism in the P2Y1 ADP receptor gene is associated with increased platelet activation response to ADP. Arterioscler Thromb Vasc Biol 25:252–257

    CAS  PubMed  Google Scholar 

  • Hirschowitz BI, Hawkey CJ (2001) Questions regarding future research on aspirin and the gastrointestinal tract. Am J Med 110:74S–78S

    CAS  PubMed  Google Scholar 

  • Hirsh J, Dalen JE, Fuster V, Harker LB, Patrono C, Roth G (1995) Aspirin and other platelet-active drugs. The relationship among dose, effectiveness, and side effects. Chest 108:247S–257S

    CAS  PubMed  Google Scholar 

  • Ho PM, Maddox TM, Wang L, Fihn SD, Jesse RL, Peterson ED et al (2009) Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA 301:937–944

    CAS  PubMed  Google Scholar 

  • Hochholzer W, Trenk D, Bestehorn HP, Fischer B, Valina CM, Ferenc M et al (2006) Impact of the degree of peri-interventional platelet inhibition after loading with clopidogrel on early clinical outcome of elective coronary stent placement. J Am Coll Cardiol 48:1742–1750

    CAS  PubMed  Google Scholar 

  • Hochholzer W, Trenk D, Fromm MF, Valina CM, Stratz C, Bestehorn HP et al (2010) Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J Am Coll Cardiol 55:2427–2434

    CAS  PubMed  Google Scholar 

  • Holinstat M, Voss B, Bilodeau ML, McLaughlin JN, Cleator J, Hamm HE (2006) PAR4, but not PAR1, signals human platelet aggregation via Ca2+ mobilization and synergistic P2Y12 receptor activation. J Biol Chem 281:26665–26674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V et al (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    CAS  PubMed  Google Scholar 

  • Holmes DR Jr, Dehmer GJ, Kaul S, Leifer D, O’Gara PT, Stein CM (2010) ACCF/AHA Clopidogrel Clinical Alert: Approaches to the FDA “Boxed Warning”. A Report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the American Heart Association. Circulation 122:537–557

    PubMed  Google Scholar 

  • Hulot JS, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C et al (2006) Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 108:2244–2247

    CAS  PubMed  Google Scholar 

  • Hulot JS, Collet JP, Silvain J, Pena A, Bellemain-Appaix A, Barthelemy O et al (2010) Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration: a systematic meta-analysis. J Am Coll Cardiol 56:134–143

    CAS  PubMed  Google Scholar 

  • Humbert M, Nurden P, Bihour C, Pasquet JM, Winckler J, Heilmann E et al (1996) Ultrastructural studies of platelet aggregates from human subjects receiving clopidogrel and from a patient with an inherited defect of an ADP-dependent pathway of platelet activation. Arterioscler Thromb Vasc Biol 16:1532–1543

    CAS  PubMed  Google Scholar 

  • Hurbin F, Boulenc X, Daskalakis N, Farenc C, Taylor T, Bonneau D et al (2012) Clopidogrel pharmacodynamics and pharmacokinetics in the fed and fasted state: a randomized crossover study of healthy men. J Clin Pharmacol 52:1506–1515

    CAS  PubMed  Google Scholar 

  • Iijima R, Ndrepepa G, Mehilli J, Byrne RA, Schulz S, Neumann FJ et al (2009) Profile of bleeding and ischaemic complications with bivalirudin and unfractionated heparin after percutaneous coronary intervention. Eur Heart J 30:290–296

    CAS  PubMed  Google Scholar 

  • Ishida F, Furihata K, Ishida K, Yan J, Kitano K, Kiyosawa K et al (1995) The largest variant of platelet glycoprotein Ib alpha has four tandem repeats of 13 amino acids in the macroglycopeptide region and a genetic linkage with methionine145. Blood 86:1357–1360

    CAS  PubMed  Google Scholar 

  • Jacobson AK (2004) Platelet ADP receptor antagonists: ticlopidine and clopidogrel. Best Pract Res Clin Haematol 17:55–64

    CAS  PubMed  Google Scholar 

  • Jang JS, Cho KI, Jin HY, Seo JS, Yang TH, Kim DK et al (2012) Meta-analysis of cytochrome P450 2C19 polymorphism and risk of adverse clinical outcomes among coronary artery disease patients of different ethnic groups treated with clopidogrel. Am J Cardiol 110:502–508

    CAS  PubMed  Google Scholar 

  • Jernas M, Olsson B, Arner P, Jacobson P, Sjostrom L, Walley A et al (2009) Regulation of carboxylesterase 1 (CES1) in human adipose tissue. Biochem Biophys Res Commun 383:63–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin RC, Voetsch B, Loscalzo J (2005) Endogenous mechanisms of inhibition of platelet function. Microcirculation 12:247–258

    CAS  PubMed  Google Scholar 

  • Jinnai T, Horiuchi H, Makiyama T, Tazaki J, Tada T, Akao M et al (2009) Impact of CYP2C19 polymorphisms on the antiplatelet effect of clopidogrel in an actual clinical setting in Japan. Circ J 73:1498–1503

    CAS  PubMed  Google Scholar 

  • Johnson JA, Roden DM, Lesko LJ, Ashley E, Klein TE, Shuldiner AR (2012) Clopidogrel: a case for indication-specific pharmacogenetics. Clin Pharmacol Ther 91:774–776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones CI, Bray S, Garner SF, Stephens J, de Bono B, Angenent WG et al (2009) A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways. Blood 114:1405–1416

    CAS  PubMed  Google Scholar 

  • Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S et al (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694

    CAS  PubMed  Google Scholar 

  • Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O et al (2010) Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos 38:92–99

    CAS  PubMed  Google Scholar 

  • Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI et al (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 70:189–199

    CAS  PubMed  Google Scholar 

  • Kim KA, Park PW, Hong SJ, Park JY (2008a) The effect of CYP2C19 polymorphism on the pharmacokinetics and pharmacodynamics of clopidogrel: a possible mechanism for clopidogrel resistance. Clin Pharmacol Ther 84:236–242

    CAS  PubMed  Google Scholar 

  • Kim KA, Park PW, Park JY (2008b) Effect of CYP3A5*3 genotype on the pharmacokinetics and antiplatelet effect of clopidogrel in healthy subjects. Eur J Clin Pharmacol 64:589–597

    CAS  PubMed  Google Scholar 

  • Kimura M, Ieiri I, Wada Y, Mamiya K, Urae A, Iimori E et al (1999) Reliability of the omeprazole hydroxylation index for CYP2C19 phenotyping: possible effect of age, liver disease and length of therapy. Br J Clin Pharmacol 47:115–119

    CAS  PubMed Central  PubMed  Google Scholar 

  • King SB III, Smith SC Jr, Hirshfeld JW Jr, Jacobs AK, Morrison DA, Williams DO et al (2008) 2007 Focused Update of the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2007 Writing Group to Review New Evidence and Update the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention, Writing on Behalf of the 2005 Writing Committee. Circulation 117:261–295

    PubMed  Google Scholar 

  • Kinnaird TD, Stabile E, Mintz GS, Lee CW, Canos DA, Gevorkian N et al (2003) Incidence, predictors, and prognostic implications of bleeding and blood transfusion following percutaneous coronary interventions. Am J Cardiol 92:930–935

    PubMed  Google Scholar 

  • Kotlyar M, Carson SW (1999) Effects of obesity on the cytochrome P450 enzyme system. Int J Clin Pharmacol Ther 37:8–19

    CAS  PubMed  Google Scholar 

  • Kuijpers RW, Faber NM, Cuypers HT, Ouwehand WH, dem Borne AE (1992) NH2-terminal globular domain of human platelet glycoprotein Ib alpha has a methionine 145/threonine145 amino acid polymorphism, which is associated with the HPA-2 (Ko) alloantigens. J Clin Invest 89:381–384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kulkarni S, Dopheide SM, Yap CL, Ravanat C, Freund M, Mangin P et al (2000) A revised model of platelet aggregation. J Clin Invest 105:783–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kunicki TJ, Kritzik M, Annis DS, Nugent DJ (1997) Hereditary variation in platelet integrin alpha 2 beta 1 density is associated with two silent polymorphisms in the alpha 2 gene coding sequence. Blood 89:1939–1943

    CAS  PubMed  Google Scholar 

  • Latry P, Martin-Latry K, Lafitte M, Peter C, Couffinhal T (2012) Dual antiplatelet therapy after myocardial infarction and percutaneous coronary intervention: analysis of patient adherence using a French health insurance reimbursement database. EuroIntervention 7:1413–1419

    PubMed  Google Scholar 

  • Lau WC, Waskell LA, Watkins PB, Neer CJ, Horowitz K, Hopp AS et al (2003) Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug-drug interaction. Circulation 107:32–37

    CAS  PubMed  Google Scholar 

  • Lau WC, Welch TD, Shields T, Rubenfire M, Tantry US, Gurbel PA (2011) The effect of St. John’s Wort on the pharmacodynamic response of clopidogrel in hyporesponsive volunteers and patients: Increased platelet inhibition by enhancement of CYP3A4 metabolic activity. J Cardiovasc Pharmacol 57:86–93

    CAS  PubMed  Google Scholar 

  • Lee JM, Park S, Shin DJ, Choi D, Shim CY, Ko YG et al (2009) Relation of genetic polymorphisms in the cytochrome P450 gene with clopidogrel resistance after drug-eluting stent implantation in Koreans. Am J Cardiol 104:46–51

    CAS  PubMed  Google Scholar 

  • Lee SJ, Kwon JA, Cho SA, Jarrar YB, Shin JG (2012) Effects of testosterone and 17beta-oestradiol on expression of the G protein-coupled receptor P2Y12 in megakaryocytic DAMI cells. Platelets 23:579–585

    CAS  PubMed  Google Scholar 

  • Lei HP, Yu XY, Xie HT, Li HH, Fan L, Dai LL et al (2010) Effect of St. John’s wort supplementation on the pharmacokinetics of bupropion in healthy male Chinese volunteers. Xenobiotica 40:275–281

    CAS  PubMed  Google Scholar 

  • Lenain N, Freund M, Leon C, Cazenave JP, Gachet C (2003) Inhibition of localized thrombosis in P2Y1-deficient mice and rodents treated with MRS2179, a P2Y1 receptor antagonist. J Thromb Haemost 1:1144–1149

    CAS  PubMed  Google Scholar 

  • Lev EI, Patel RT, Guthikonda S, Lopez D, Bray PF, Kleiman NS (2007) Genetic polymorphisms of the platelet receptors P2Y(12), P2Y(1) and GP IIIa and response to aspirin and clopidogrel. Thromb Res 119:355–360

    CAS  PubMed  Google Scholar 

  • Lewis JP, Horenstein RB, Ryan K, O'Connell JR, Gibson Q, Mitchell BD et al (2013) The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genomics 23:1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li XL, Cao J, Fan L, Ye L, Wang Q, Cui CP et al (2012a) Correlation analysis of aspirin resistance and cyclooxygenase-1 haplotype in old Chinese patients with cardio-cerebrovascular diseases. Chin J Ying Yang Physiol 28:225–229 (in Chinese)

    Google Scholar 

  • Li Y, Tang HL, Hu YF, Xie HG (2012b) The gain-of-function variant allele CYP2C19*17: a double-edged sword between thrombosis and bleeding in clopidogrel-treated patients. J Thromb Haemost 10:199–206

    CAS  PubMed  Google Scholar 

  • Lin SY, Cui HB, Chen XM, Wang SH, Zhou HL, Du WP et al (2012) Clinical application of VerifyNow-P2Y12 assay in evaluation of platelet inhibition efficacy of clopidogrel. Chin J Cardiovasc Dis 40:662–666 (in Chinese)

    Google Scholar 

  • Lins R, Broekhuysen J, Necciari J, Deroubaix X (1999) Pharmacokinetic profile of 14C-labeled clopidogrel. Semin Thromb Hemost 25(Suppl 2):29–33

    CAS  PubMed  Google Scholar 

  • Liu YT, Hao HP, Liu CX, Wang GJ, Xie HG (2007) Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 39:699–721

    CAS  PubMed  Google Scholar 

  • Liu XL, Wang ZJ, Yang Q, Ge HL, Gao F, Liu YY et al (2010) Impact of CYP2C19 polymorphism and smoking on response to clopidogrel in patients with stable coronary artery disease. Chin Med J 123:3178–3183

    CAS  PubMed  Google Scholar 

  • Longo DL (2012) Tumor heterogeneity and personalized medicine. N Engl J Med 366:956–957

    CAS  PubMed  Google Scholar 

  • Lopez JA, Ludwig EH, McCarthy BJ (1992) Polymorphism of human glycoprotein Ib alpha results from a variable number of tandem repeats of a 13-amino acid sequence in the mucin-like macroglycopeptide region. Structure/function implications. J Biol Chem 267:10055–10061

    CAS  PubMed  Google Scholar 

  • Lown KS, Bailey DG, Fontana RJ, Janardan SK, Adair CH, Fortlage LA et al (1997) Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 99:2545–2553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luchessi AD, Silbiger VN, Cerda A, Hirata RD, Carracedo A, Brion M et al (2012) Increased clopidogrel response is associated with ABCC3 expression: a pilot study. Clin Chim Acta 413:417–421

    CAS  PubMed  Google Scholar 

  • Malek LA, Kisiel B, Spiewak M, Grabowski M, Filipiak KJ, Kostrzewa G et al (2008) Coexisting polymorphisms of P2Y12 and CYP2C19 genes as a risk factor for persistent platelet activation with clopidogrel. Circ J 72:1165–1169

    CAS  PubMed  Google Scholar 

  • Mani H, Toennes SW, Linnemann B, Urbanek DA, Schwonberg J, Kauert GF et al (2008) Determination of clopidogrel main metabolite in plasma: a useful tool for monitoring therapy? Ther Drug Monit 30:84–89

    CAS  PubMed  Google Scholar 

  • Mao Z, Li Y, Peng Y, Luan X, Gui H, Feng X et al (2011) Lipopolysaccharide down-regulates carbolesterases 1 and 2 and reduces hydrolysis activity in vitro and in vivo via p38MAPK-NF-kappaB pathway. Toxicol Lett 201:213–220

    CAS  PubMed  Google Scholar 

  • Marcus AJ, Safier LB, Hajjar KA, Ullman HL, Islam N, Broekman MJ et al (1991) Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. Thromboregulation by endothelial cells. J Clin Invest 88:1690–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Alyonycheva TN, Safier LB et al (1997) The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 99:1351–1360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Pinsky DJ, Sesti C et al (2003) Metabolic control of excessive extracellular nucleotide accumulation by CD39/ecto-nucleotidase-1: implications for ischemic vascular diseases. J Pharmacol Exp Ther 305:9–16

    CAS  PubMed  Google Scholar 

  • Maree AO, Curtin RJ, Dooley M, Conroy RM, Crean P, Cox D et al (2005) Platelet response to low-dose enteric-coated aspirin in patients with stable cardiovascular disease. J Am Coll Cardiol 46:1258–1263

    CAS  PubMed  Google Scholar 

  • Marzolini C, Paus E, Buclin T, Kim RB (2004) Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 75:13–33

    CAS  PubMed  Google Scholar 

  • Maseneni S, Donzelli M, Taegtmeyer AB, Brecht K, Krahenbuhl S (2012) Toxicology of clopidogrel and ticlopidine on human myeloid progenitor cells; Importance of metabolites. Toxicology 299:139–145

    CAS  PubMed  Google Scholar 

  • Matetzky S, Shenkman B, Guetta V, Shechter M, Bienart R, Goldenberg I et al (2004) Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation 109:3171–3175

    CAS  PubMed  Google Scholar 

  • Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT et al (2009a) Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 360:354–362

    CAS  PubMed  Google Scholar 

  • Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT et al (2009b) Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation 119:2553–2560

    CAS  PubMed  Google Scholar 

  • Mega JL, Close SL, Wiviott SD, Shen L, Walker JR, Simon T et al (2010) Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet 376:1312–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mehta SR, Yusuf S, Peters RJ, Bertrand ME, Lewis BS, Natarajan MK et al (2001) Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 358:527–533

    CAS  PubMed  Google Scholar 

  • Mehta SR, Tanguay JF, Eikelboom JW, Jolly SS, Joyner CD, Granger CB et al (2010) Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial. Lancet 376:1233–1243

    CAS  PubMed  Google Scholar 

  • Michelson AD, Linden MD, Furman MI, Li Y, Barnard MR, Fox ML et al (2007) Evidence that pre-existent variability in platelet response to ADP accounts for ‘clopidogrel resistance’. J Thromb Haemost 5:75–81

    CAS  PubMed  Google Scholar 

  • Mobley JE, Bresee SJ, Wortham DC, Craft RM, Snider CC, Carroll RC (2004) Frequency of nonresponse antiplatelet activity of clopidogrel during pretreatment for cardiac catheterization. Am J Cardiol 93:456–458

    CAS  PubMed  Google Scholar 

  • Mockel M, Muller R, Vollert JO, Muller C, Danne O, Gareis R et al (2007) Lipoprotein-associated phospholipase A2 for early risk stratification in patients with suspected acute coronary syndrome: a multi-marker approach: the North Wuerttemberg and Berlin Infarction Study-II (NOBIS-II). Clin Res Cardiol 96:604–612

    CAS  PubMed  Google Scholar 

  • Monton M, Jimenez A, Nunez A, Lopez-Blaya A, Farre J, Gomez J et al (2000) Comparative effects of angiotensin II AT-1-type receptor antagonists in vivo on human platelet activation. J Cardiovasc Pharmacol 35:906–913

    CAS  PubMed  Google Scholar 

  • Mullangi R, Srinivas NR (2009) Clopidogrel: review of bioanalytical methods, pharmacokinetics/pharmacodynamics, and update on recent trends in drug-drug interaction studies. Biomed Chromatogr 23:26–41

    CAS  PubMed  Google Scholar 

  • Muller I, Besta F, Schulz C, Massberg S, Schonig A, Gawaz M (2003) Prevalence of clopidogrel non-responders among patients with stable angina pectoris scheduled for elective coronary stent placement. Thromb Haemost 89:783–787

    CAS  PubMed  Google Scholar 

  • Muller K, Aichele S, Herkommer M, Bigalke B, Stellos K, Htun P et al (2010) Impact of inflammatory markers on platelet inhibition and cardiovascular outcome including stent thrombosis in patients with symptomatic coronary artery disease. Atherosclerosis 213:256–262

    PubMed  Google Scholar 

  • Muller C, Caillard S, Jesel L, El Ghannudi S, Ohlmann P, Sauleau E et al (2012) Association of estimated GFR with platelet inhibition in patients treated with clopidogrel. Am J Kidney Dis 59:777–785

    CAS  PubMed  Google Scholar 

  • Nguyen TA, Diodati JG, Pharand C (2005) Resistance to clopidogrel: a review of the evidence. J Am Coll Cardiol 45:1157–1164

    CAS  PubMed  Google Scholar 

  • Nishiya Y, Hagihara K, Ito T, Tajima M, Miura S, Kurihara A et al (2009) Mechanism-based inhibition of human cytochrome P450 2B6 by ticlopidine, clopidogrel, and the thiolactone metabolite of prasugrel. Drug Metab Dispos 37:589–593

    CAS  PubMed  Google Scholar 

  • Niu H, Chen X, Gruppo RA, Li D, Wang Y, Zhang L et al (2012) Integrin αIIb-mediated PI3k/Akt activation in platelets. PLoS One 7:e47356

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Donnell CJ, Larson MG, Feng D, Sutherland PA, Lindpaintner K, Myers RH et al (2001) Genetic and environmental contributions to platelet aggregation: the Framingham heart study. Circulation 103:3051–3056

    PubMed  Google Scholar 

  • O’Donoghue M, Wiviott SD (2006) Clopidogrel response variability and future therapies: clopidogrel: does one size fit all? Circulation 114:e600–e606

    PubMed  Google Scholar 

  • Ohmori T, Yano Y, Sakata A, Ikemoto T, Shimpo M, Madoiwa S et al (2012) Lack of association between serum paraoxonase-1 activity and residual platelet aggregation during dual anti-platelet therapy. Thromb Res 129:e36–e40

    CAS  PubMed  Google Scholar 

  • Ostadal P, Ostadal B (2012) Women and the management of acute coronary syndrome. Can J Physiol Pharmacol 90:1151–1159

    CAS  PubMed  Google Scholar 

  • Ozdemir V, Graham JE, Godard B (2008) Race as a variable in pharmacogenomics science: from empirical ethics to publication standards. Pharmacogenet Genomics 18:837–841

    CAS  PubMed  Google Scholar 

  • Pare G, Mehta SR, Yusuf S, Anand SS, Connolly SJ, Hirsh J et al (2010) Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med 363:1704–1714

    CAS  PubMed  Google Scholar 

  • Park KW, Park JJ, Lee SP, Oh IY, Suh JW, Yang HM et al (2011) Cilostazol attenuates on-treatment platelet reactivity in patients with CYP2C19 loss of function alleles receiving dual antiplatelet therapy: a genetic substudy of the CILON-T randomised controlled trial. Heart 97:641–647

    CAS  PubMed  Google Scholar 

  • Park KW, Kang SH, Kang J, Jeon KH, Park JJ, Han JK et al (2012) Enhanced clopidogrel response in smokers is reversed after discontinuation as assessed by VerifyNow assay: additional evidence for the concept of ‘smokers’ paradox’. Heart 98:1000–1006

    CAS  PubMed  Google Scholar 

  • Patrono C, Bachmann F, Baigent C, Bode C, De Caterina R, Charbonnier B et al (2004a) Expert consensus document on the use of antiplatelet agents. The task force on the use of antiplatelet agents in patients with atherosclerotic cardiovascular disease of the European society of cardiology. Eur Heart J 25:166–181

    PubMed  Google Scholar 

  • Patrono C, Coller B, FitzGerald GA, Hirsh J, Roth G (2004b) Platelet-active drugs: the relationships among dose, effectiveness, and side effects: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126:234S–264S

    CAS  PubMed  Google Scholar 

  • Patrono C, Garcia Rodriguez LA, Landolfi R, Baigent C (2005) Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med 353:2373–2383

    CAS  PubMed  Google Scholar 

  • Peace A, McCall M, Tedesco T, Kenny D, Conroy RM, Foley D et al (2010) The role of weight and enteric coating on aspirin response in cardiovascular patients. J Thromb Haemost 8:2323–2325

    CAS  PubMed  Google Scholar 

  • Pena A, Collet JP, Hulot JS, Silvain J, Barthelemy O, Beygui F et al (2009) Can we override clopidogrel resistance? Circulation 119:2854–2857

    PubMed  Google Scholar 

  • Pereillo JM, Maftouh M, Andrieu A, Uzabiaga MF, Fedeli O, Savi P et al (2002) Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab Dispos 30:1288–1295

    CAS  PubMed  Google Scholar 

  • Peters RJ, Mehta SR, Fox KA, Zhao F, Lewis BS, Kopecky SL et al (2003) Effects of aspirin dose when used alone or in combination with clopidogrel in patients with acute coronary syndromes: observations from the Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) study. Circulation 108:1682–1687

    CAS  PubMed  Google Scholar 

  • Petersen JL, Dery JP, Fischi MC, Hernandez AF, Hranitzky PM, Rao SV et al (2003) Highlights from the American College of Cardiology Annual Scientific Sessions 2003: March 28 to April 2, 2003. Am Heart J 146:19–26

    PubMed  Google Scholar 

  • Piazuelo E, Fuentes J, Garcia-Gonzalez MA, Jimenez P, Lanas A (2008) A case–control study of the association between polymorphisms of the endothelial nitric oxide synthase and glycoprotein IIIa genes and upper gastrointestinal bleeding in users of low-dose aspirin. Clin Ther 30:121–130

    CAS  PubMed  Google Scholar 

  • Pignatelli P, De Biase L, Lenti L, Tocci G, Brunelli A, Cangemi R et al (2005) Tumor necrosis factor-alpha as trigger of platelet activation in patients with heart failure. Blood 106:1992–1994

    CAS  PubMed  Google Scholar 

  • Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ et al (2004) Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329:15–19

    PubMed Central  PubMed  Google Scholar 

  • Price MJ, Endemann S, Gollapudi RR, Valencia R, Stinis CT, Levisay JP et al (2008) Prognostic significance of post-clopidogrel platelet reactivity assessed by a point-of-care assay on thrombotic events after drug-eluting stent implantation. Eur Heart J 29:992–1000

    PubMed  Google Scholar 

  • Price MJ, Berger PB, Teirstein PS, Tanguay JF, Angiolillo DJ, Spriggs D et al (2011) Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA 305:1097–1105

    CAS  PubMed  Google Scholar 

  • Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL, Ramirez AH et al (2012) Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin Pharmacol Ther 92:87–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quinn MJ, Fitzgerald DJ (1999) Ticlopidine and clopidogrel. Circulation 100:1667–1672

    CAS  PubMed  Google Scholar 

  • Rahimi R, Abdollahi M (2012) An update on the ability of St.John’s wort to affect the metabolism of other drugs. Expert Opin Drug Metab Toxicol 8:691–708

    PubMed  Google Scholar 

  • Ramsjo M, Aklillu E, Bohman L, Ingelman-Sundberg M, Roh HK, Bertilsson L (2010) CYP2C19 activity comparison between Swedes and Koreans: effect of genotype, sex, oral contraceptive use, and smoking. Eur J Clin Pharmacol 66:871–877

    PubMed  Google Scholar 

  • Ray WA, Murray KT, Griffin MR, Chung CP, Smalley WE, Hall K et al (2010) Outcomes with concurrent use of clopidogrel and proton-pump inhibitors: a cohort study. Ann Intern Med 152:337–345

    PubMed Central  PubMed  Google Scholar 

  • Reist M, Roy-de Vos M, Montseny JP, Mayer JM, Carrupt PA, Berger Y et al (2000) Very slow chiral inversion of clopidogrel in rats: a pharmacokinetic and mechanistic investigation. Drug Metab Dispos 28:1405–1410

    CAS  PubMed  Google Scholar 

  • Richter T, Murdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M et al (2004) Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther 308:189–197

    CAS  PubMed  Google Scholar 

  • Rivera J, Lozano ML, Navarro-Nunez L, Vicente V (2009) Platelet receptor and signaling in the dynamics of thrombus formation. Haematologica 94:700–711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts JD, Wells GA, Le May MR, Labinaz M, Glover C, Froeschl M et al (2012) Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet 379:1705–1711

    CAS  PubMed  Google Scholar 

  • Roden DM, Shuldiner AR (2010) Responding to the Clopidogrel Warning by the US Food and Drug Administration. Real life is complicated. Circulation 122:445–448

    PubMed Central  PubMed  Google Scholar 

  • Roden DM, Stein CM (2009) Clopidogrel and the concept of high-risk pharmacokinetics. Circulation 119:2127–2130

    PubMed  Google Scholar 

  • Ruiz ML, Rigalli JP, Arias A, Villanueva S, Banchio C, Vore M et al (2013) Induction of hepatic multidrug resistance associated protein 3 by ethynylestradiol in independent of cholestasis and mediated by estrogen receptor. Drug Metab Dispos 41:275–280

    CAS  PubMed  Google Scholar 

  • Sabatine MS, Cannon CP, Gibson CM, Lopez-Sendon JL, Montalescot G, Theroux P et al (2005) Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N Engl J Med 352:1179–1189

    CAS  PubMed  Google Scholar 

  • Sachdeva A, Bavisetty S, Beckham G, Shen AY, Aharonian V, Mansulonani P et al (2012) Discontinuation of long-term clopidogrel therapy is associated with death and myocardial infarction after saphenous vein graft percutaneous coronary intervention. J Am Coll Cardiol 60:2357–2363

    CAS  PubMed  Google Scholar 

  • Sadler JE (2010) Redeeming ristocetin. Blood 116:155–156

    CAS  PubMed  Google Scholar 

  • Sai K, Saito Y, Tatewaki N, Hosokawa M, Kaniwa N, Nishimaki-Mogami T et al (2010) Association of carboxylesterase 1A genotypes with irinotecan pharmacokinetics in Japanese cancer patients. Br J Clin Pharmacol 70:222–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sambu N, Radhakrishnan A, Dent H, Calver AL, Corbett S, Gray H et al (2012) Personalised antiplatelet therapy in stent thrombosis: observations from the Clopidogrel Resistance in Stent Thrombosis (CREST) registry. Heart 98:706–711

    CAS  PubMed  Google Scholar 

  • Sangkuhl K, Klein TE, Altman RB (2010) Clopidogrel pathway. Pharmacogenet Genomics 20:463–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato Y, Miyashita A, Iwatsubo T, Usui T (2012a) Conclusive identification of the oxybutynin-hydrolyzing enzyme in human liver. Drug Metab Dispos 40:902–906

    CAS  PubMed  Google Scholar 

  • Sato Y, Miyashita A, Iwatsubo T, Usui T (2012b) Simultaneous absolute protein quantification of carboxylesterases 1 and 2 in human liver tissue fractions using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 40:1389–1396

    CAS  PubMed  Google Scholar 

  • Savi P, Herbert JM (2005) Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost 31:174–183

    CAS  PubMed  Google Scholar 

  • Savi P, Herbert JM, Pflieger AM, Dol F, Delebassee D, Combalbert J et al (1992) Importance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel. Biochem Pharmacol 44:527–532

    CAS  PubMed  Google Scholar 

  • Savi P, Combalbert J, Gaich C, Rouchon MC, Maffrand JP, Berger Y et al (1994a) The antiaggregating activity of clopidogrel is due to a metabolic activation by the hepatic cytochrome P450-1A. Thromb Haemost 72:313–317

    CAS  PubMed  Google Scholar 

  • Savi P, Laplace MC, Maffrand JP, Herbert JM (1994b) Binding of [3H]-2-methylthio ADP to rat platelets–effect of clopidogrel and ticlopidine. J Pharmacol Exp Ther 269:772–777

    CAS  PubMed  Google Scholar 

  • Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP et al (2000) Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 84:891–896

    CAS  PubMed  Google Scholar 

  • Saw J, Brennan DM, Steinhubl SR, Bhatt DL, Mak KH, Fox K et al (2007) Lack of evidence of a clopidogrel-statin interaction in the CHARISMA trial. J Am Coll Cardiol 50:291–295

    CAS  PubMed  Google Scholar 

  • Schaeffeler E, Eichelbaum M, Brinkmann U, Penger A, Asante-Poku S, Zanger UM et al (2001) Frequency of C3435T polymorphism of MDR1 gene in African people. Lancet 358:383–384

    CAS  PubMed  Google Scholar 

  • Schneider DJ (2011) Anti-platelet therapy: glycoprotein IIb-IIIa antagonists. Br J Clin Pharmacol 72:672–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schrenk D, Brockmeier D, Morike K, Bock KW, Eichelbaum M (1998) A distribution study of CYP1A2 phenotypes among smokers and non-smokers in a cohort of healthy Caucasian volunteers. Eur J Clin Pharmacol 53:361–367

    CAS  PubMed  Google Scholar 

  • Schroeder WS, Ghobrial L, Gandhi PJ (2006) Possible mechanisms of drug-induced aspirin and clopidogrel resistance. J Thromb Thrombolysis 22:139–150

    CAS  PubMed  Google Scholar 

  • Schwemmer M, Sommer O, Bassenge E (2001) Angiotensin receptor blocker losartan suppresses platelet activity by interfering with thromboxane signaling. Cardiovasc Drugs Ther 15:301–307

    CAS  PubMed  Google Scholar 

  • Scott SA, Sangkuhl K, Gardner EE, Stein CM, Hulot JS, Johnson JA et al (2011) Clinical pharmacogenomics of implementation consortium guidelines for cytochrome P450-2c19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther 90:328–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serebruany VL, Oshrine BR, Malinin AI, Atar D, Michelson AD, Ferguson JJ III (2005) Noncompliance in cardiovascular clinical trials. Am Heart J 150:882–886

    PubMed  Google Scholar 

  • Shahabi P, Siest G, Visvikis-Siest S (2012) Clinical interest of point-of-care pharmacogenomic testing: clopidogrel behind warfarin. Pharmacogenomics 13:1215–1218

    CAS  PubMed  Google Scholar 

  • Shankar H, Garcia A, Prabhaker J, Kim S, Kunapuli SP (2006) P2Y12 receptor-mediated potentiation of thrombin-induced thromboxane A2 generation in platelets occurs through regulation of Erk1/2 activation. J Thromb Haemost 4:638–647

    CAS  PubMed  Google Scholar 

  • Sharis PJ, Cannon CP, Loscalzo J (1998) The antiplatelet effects of ticlopidine and clopidogrel. Ann Intern Med 129:394–405

    CAS  PubMed  Google Scholar 

  • Shimasaki Y, Yasue H, Yoshimura M, Nakayama M, Kugiyama K, Ogawa H et al (1998) Association of the missense Glu298Asp variant of the endothelial nitric oxide synthase gene with myocardial infarction. J Am Coll Cardiol 31:1506–1510

    CAS  PubMed  Google Scholar 

  • Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB et al (2009) Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302:849–857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sibbing D, von Beckerath O, Schomig A, Kastrati A, von Beckerath N (2006) P2Y1 gene A1622G dimorphism is not associated with adenosine diphosphate-induced platelet activation and aggregation after administration of a single high dose of clopidogrel. J Thromb Haemost 4:912–914

    CAS  PubMed  Google Scholar 

  • Sibbing D, Stegherr J, Latz W, Koch W, Mehilli J, Dorrler K et al (2009) Cytochrome P450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention. Eur Heart J 30:916–922

    CAS  PubMed  Google Scholar 

  • Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J et al (2010) Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 121:512–518

    CAS  PubMed  Google Scholar 

  • Sibbing D, Bernlochner I, Schulz S, Massberg S, Schomig A, Mehilli J et al (2012) The impact of smoking on the antiplatelet action of clopidogrel in non-ST-elevation myocardial infarction patients: results from the ISAR-REACT 4 platelet substudy. J Thromb Haemost 10:2199–2202

    CAS  PubMed  Google Scholar 

  • Siller-Matula JM, Lang I, Christ G, Jilma B (2008) Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. J Am Coll Cardiol 52:1557–1563

    CAS  PubMed  Google Scholar 

  • Siller-Matula JM, Delle-Karth G, Christ G, Neunteufl T, Maurer G, Huber K et al (2013) Dual non-responsiveness to antiplatelet treatment is a stronger predictor of cardiac adverse events than isolated non-responsiveness to clopidogrel or aspirin. Int J Cardiol 167:430–435

    Google Scholar 

  • Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N et al (2009) Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med 360:363–375

    CAS  PubMed  Google Scholar 

  • Small DS, Farid NA, Li YG, Ernest CS, Payne CD, Salazar DE et al (2008) Effect of ranitidine on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. Curr Med Res Opin 24:2251–2257

    CAS  PubMed  Google Scholar 

  • Smith SC Jr, Allen J, Blair SN, Bonow RO, Brass LM, Fonarow GC et al (2006a) AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation 113:2363–2372

    PubMed  Google Scholar 

  • Smith SM, Judge HM, Peters G, Armstrong M, Fontana P, Gaussem P et al (2006b) Common sequence variations in the P2Y12 and CYP3A5 genes do not explain the variability in the inhibitory effects of clopidogrel therapy. Platelets 17:250–258

    CAS  PubMed  Google Scholar 

  • Snoep JD, Hovens MM, Eikenboom JC, van der Bom JG, Jukema JW, Huisman MV (2007) Clopidogrel nonresponsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and meta-analysis. Am Heart J 154:221–231

    CAS  PubMed  Google Scholar 

  • Sofi F, Giusti B, Marcucci R, Gori AM, Abbate R, Gensini GF (2011) Cytochrome P450 2C19*2 polymorphism and cardiovascular recurrences in patients taking clopidogrel: a meta-analysis. Pharmacogenomics J 11:199–206

    CAS  PubMed  Google Scholar 

  • Steering Committee CAPRIE (1996) A randomized, blinded, trial of clopidogrel versus aspirin in patients at risk for ischemic events (CAPRIE). Lancet 348:1329–1339

    Google Scholar 

  • Steinhubl SR, Berger PB, Mann JT III, Fry ET, DeLago A, Wilmer C et al (2002) Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 288:2411–2420

    CAS  PubMed  Google Scholar 

  • Storey RF (2009) Clopidogrel in acute coronary syndrome: to genotype or not? Lancet 373:276–278

    PubMed  Google Scholar 

  • Sugidachi A, Ogawa T, Kurihara A, Hagihara K, Jakubowski JA, Hashimoto M et al (2007) The greater in vivo antiplatelet effects of prasugrel as compared to clopidogrel reflect more efficient generation of its active metabolite with similar antiplatelet activity to that of clopidogrel’s active metabolite. J Thromb Haemost 5:1545–1551

    CAS  PubMed  Google Scholar 

  • Suh JW, Koo BK, Zhang SY, Park KW, Cho JY, Jang IJ et al (2006) Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. CMAJ 174:1715–1722

    PubMed Central  PubMed  Google Scholar 

  • Sun YJ, Li YZ, Jiang DM, Zhang B, Gao Y, Yu HJ et al (2012) Effects of smoke on clinical prognosis of patients with acute ST-segment elevation myocardial infarction. Natl Med J China 92:1963–1966 (in Chinese)

    Google Scholar 

  • Taubert D, Kastrati A, Harlfinger S, Gorchakova O, Lazar A, von Beckerath N et al (2004) Pharmacokinetics of clopidogrel after administration of a high loading dose. Thromb Haemost 92:311–316

    CAS  PubMed  Google Scholar 

  • Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T et al (2006) Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther 80:486–501

    CAS  PubMed  Google Scholar 

  • Tello-Montoliu A, Ferreiro JL, Kodali MK, Ueno M, Tomasello SD, Rollini F et al (2013) Impact of renal function on clopidogrel-induced antiplatelet effects in coronary artery disease patients without diabetes mellitus. J Thromb Thromb 36:14–17

    Google Scholar 

  • The CURE Trial Investigators (2001) Effects of clopidogrel in addition to aspirin in patients with acute coronary syndrome without ST-elevation. N Engl J Med 345:494–502

    Google Scholar 

  • Topol EJ, Easton D, Harrington RA, Amarenco P, Califf RM, Graffagnino C et al (2003) Randomized, double-blind, placebo-controlled, international trial of the oral IIb/IIIa antagonist lotrafiban in coronary and cerebrovascular disease. Circulation 108:399–406

    CAS  PubMed  Google Scholar 

  • Trenk D, Hochholzer W, Fromm MF, Chialda LE, Pahl A, Valina CM et al (2008) Cytochrome P450 2C19 681G > A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol 51:1925–1934

    CAS  PubMed  Google Scholar 

  • Turpeinen M, Tolonen A, Uusitalo J, Jalonen J, Pelkonen O, Laine K (2005) Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther 77:553–559

    CAS  PubMed  Google Scholar 

  • Ueno M, Ferreiro JL, Desai B, Tomasello SD, Tello-Montoliu A, Capodanno D et al (2012) Cigarette smoking is associated with a dose–response effect in clopidogrel-treated patients with diabetes mellitus and coronary artery disease: results of a pharmacodynamic study. JACC Cardiovasc Interv 5:293–300

    PubMed  Google Scholar 

  • Umemura K, Furuta T, Kondo K (2008) The common gene variants of CYP2C19 affect pharmacokinetics and pharmacodynamics in an active metabolite of clopidogrel in healthy subjects. J Thromb Haemost 6:1439–1441

    CAS  PubMed  Google Scholar 

  • Valgimigli M, Minarelli M (2011) Triple antiplatelet therapy in acute coronary syndromes. Drugs 71:1703–1719

    CAS  PubMed  Google Scholar 

  • Verschuren JJ, Boden H, Wessels JA, van der Hoeven BL, Trompet S, Heijmans BT et al (2012) Value of platelet pharmacogenetics in common clinical practice of patients with ST-segment elevation myocardial infarction. Int J Cardiol (in press)

    Google Scholar 

  • Vistoli G, Pedretti A, Mazzolari A, Bolchi C, Testa B (2009) Influence of ionization state on the activation of temocapril by hCES1: a molecular-dynamics study. Chem Biodivers 6:2092–2100

    CAS  PubMed  Google Scholar 

  • von Beckerath N, Taubert D, Pogatsa-Murray G, Schomig E, Kastrati A, Schomig A (2005a) Absorption, metabolization, and antiplatelet effects of 300-, 600-, and 900-mg loading doses of clopidogrel: results of the ISAR-CHOICE (Intracoronary Stenting and Antithrombotic Regimen: Choose Between 3 High Oral Doses for Immediate Clopidogrel Effect) Trial. Circulation 112:2946–2950

    Google Scholar 

  • von Beckerath N, von Beckerath O, Koch W, Eichinger M, Schomig A, Kastrati A (2005b) P2Y12 gene H2 haplotype is not associated with increased adenosine diphosphate-induced platelet aggregation after initiation of clopidogrel therapy with a high loading dose. Blood Coagul Fibrinolysis 16:199–204

    Google Scholar 

  • Wallentin L, Varenhorst C, James S, Erlinge D, Braun OO, Jakubowski JA et al (2008) Prasugrel achieves greater and faster P2Y12receptor-mediated platelet inhibition than clopidogrel due to more efficient generation of its active metabolite in aspirin-treated patients with coronary artery disease. Eur Heart J 29:21–30

    CAS  PubMed  Google Scholar 

  • Wallentin L, James S, Storey RF, Armstrong M, Barratt BJ, Horrow J et al (2010) Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet 376:1320–1328

    CAS  PubMed  Google Scholar 

  • Wang GJ, Yang P, Xie HG (2006a) Gene variants in noncoding regions and their possible consequences. Pharmacogenomics 7:203–209

    CAS  PubMed  Google Scholar 

  • Wang TH, Bhatt DL, Topol EJ (2006b) Aspirin and clopidogrel resistance: an emerging clinical entity. Eur Heart J 27:647–654

    PubMed  Google Scholar 

  • Wenaweser P, Dorffler-Melly J, Imboden K, Windecker S, Togni M, Meier B et al (2005) Stent thrombosis is associated with an impaired response to antiplatelet therapy. J Am Coll Cardiol 45:1748–1752

    PubMed  Google Scholar 

  • Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T et al (2010) Guidelines on myocardial revascularization. Eur Heart J 31:2501–2555

    PubMed  Google Scholar 

  • Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S et al (2007) Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 357:2001–2015

    CAS  PubMed  Google Scholar 

  • Wolbold R, Klein K, Burk O, Nussler AK, Neuhaus P, Eichelbaum M et al (2003) Sex is a major determinant of CYP3A4 expression in human liver. Hepatology 38:978–988

    CAS  PubMed  Google Scholar 

  • Woo JS, Kim W, Lee SR, Jung KH, Kim WS, Lew JH et al (2011) Platelet reactivity in patients with chronic kidney disease receiving adjunctive cilostazol compared with a high-maintenance dose of clopidogrel: results of the effect of platelet inhibition according to clopidogrel dose in patients with chronic kidney disease (PIANO-2 CKD) randomized study. Am Heart J 162:1018–1025

    CAS  PubMed  Google Scholar 

  • Wurtz M, Kristensen SD, Hvas AM, Grove EL (2012) Pharmacogenetics of the antiplatelet effect of aspirin. Curr Pharm Des 18:5294–5308

    CAS  PubMed  Google Scholar 

  • Xiao D, Chen YT, Yang D, Yan B (2012) Age-related inducibility of carboxylesterases by the antiepileptic agent phenobarbital and implications in drug metabolism and lipid accumulation. Biochem Pharmacol 84:232–239

    CAS  PubMed  Google Scholar 

  • Xie HG (1997) Direct evidence for the higher frequency of CYP2C19 allelic heterozygotes in Chinese subjects than in white subjects. Clin Pharmacol Ther 62:691–692

    CAS  PubMed  Google Scholar 

  • Xie HG (2000) Genetic variations of S-mephenytoin 4′-hydroxylase (CYP2C19) in the Chinese population. Life Sci 66:L175–L181

    Google Scholar 

  • Xie HG (2010) Personalized immunosuppressive therapy in pediatric heart transplantation: progress, pitfalls and promise. Pharmacol Ther 126:146–158

    CAS  PubMed  Google Scholar 

  • Xie HG (2011) Chapter 52. Genetically polymorphic cytochrome P450s and transporters and personalized antimicrobial chemotherapy. In: Persing DH, Tenover FC, Tang YW, Nolte FS, Hayden RT, van Belkum A (eds) Molecular microbiology: diagnostic principles and practice, 2nd edn. ASM Press, Washington, DC, pp 803–832

    Google Scholar 

  • Xie HG, Frueh FW (2005) Pharmacogenomics steps toward personalized medicine. Personalized Med 2:325–337

    CAS  Google Scholar 

  • Xie HG, Kim RB (2005) St John’s wort-associated drug interactions: short-term inhibition and long-term induction? Clin Pharmacol Ther 78:19–24

    CAS  PubMed  Google Scholar 

  • Xie HG, Huang SL, Xu ZH, Xiao ZS, He N, Zhou HH (1997) Evidence for the effect of gender on activity of (S)-mephenytoin 4′-hydroxylase (CYP2C19) in a Chinese population. Pharmacogenetics 7:115–119

    CAS  PubMed  Google Scholar 

  • Xie HG, Kim RB, Stein CM, Wilkinson GR, Wood AJ (1999a) Genetic polymorphism of (S)-mephenytoin 4′-hydroxylation in populations of African descent. Br J Clin Pharmacol 48:402–408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie HG, Stein CM, Kim RB, Wilkinson GR, Flockhart DA, Wood AJ (1999b) Allelic, genotypic and phenotypic distributions of S-mephenytoin 4′-hydroxylase (CYP2C19) in healthy Caucasian populations of European descent throughout the world. Pharmacogenetics 9:539–549

    CAS  PubMed  Google Scholar 

  • Xie HG, Kim RB, Wood AJ, Stein CM (2001) Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 41:815–850

    CAS  PubMed  Google Scholar 

  • Xie HG, Prasad HC, Kim RB, Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 54:1257–1270

    CAS  PubMed  Google Scholar 

  • Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR (2004) Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 5:243–272

    CAS  PubMed  Google Scholar 

  • Xie HG, Zou JJ, Hu ZY, Zhang JJ, Ye F, Chen SL (2011) Individual variability in the disposition of and response to clopidogrel: pharmacogenomics and beyond. Pharmacol Ther 129:267–289

    CAS  PubMed  Google Scholar 

  • Yang J, Shi D, Yang D, Song X, Yan B (2007) Interleukin-6 alters the cellular responsiveness to clopidogrel, irinotecan, and oseltamivir by suppressing the expression of carboxylesterases HCE1 and HCE2. Mol Pharmacol 72:686–694

    CAS  PubMed  Google Scholar 

  • Yang J, He MM, Niu W, Wrighton SA, Li L, Liu Y et al (2012) Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes. Br J Clin Pharmacol 73:268–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yasuda SU, Zhang L, Huang SM (2008) The role of ethnicity in variability in response to drugs: focus on clinical pharmacology studies. Clin Pharmacol Ther 84:417–423

    CAS  PubMed  Google Scholar 

  • Yousef AM, Arafat T, Bulatova NR, Al Zumyli R (2008) Smoking behaviour modulates pharmacokinetics of orally administered clopidogrel. J Clin Pharm Ther 33:439–449

    CAS  PubMed  Google Scholar 

  • Zahno A, Brecht K, Bodmer M, Bur D, Tsakiris DA, Krahenbuhl S (2010) Effects of drug interactions on biotransformation and antiplatelet effect of clopidogrel in vitro. Br J Pharmacol 161:393–404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Ye J, Zhang Y, Xu X, Liu J, Zhang SH (2013) P2Y(12) protects platelets from apoptosis via PI3K-depedent bak/bax inactivation. J Thromb Haemost 11:149–160

    CAS  PubMed  Google Scholar 

  • Zhu HJ, Patrick KS, Yuan HJ, Wang JS, Donovan JL, DeVane CL et al (2008) Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet 82:1241–1248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu HJ, Appel DI, Johnson JA, Chavin KD, Markowitz JS (2009) Role of carboxylesterase 1 and impact of natural genetic variants on the hydrolysis of trandolapril. Biochem Pharmacol 77:1266–1272

    CAS  PubMed  Google Scholar 

  • Zou JJ, Xie HG, Chen SL, Tan J, Lin L, Zhao YY et al (2013) Influence of CYP2C19 loss-of-function variants on the antiplatelet effects and cardiovascular events in clopidogrel-treated Chinese patients undergoing percutaneous coronary intervention. Eur J Clin Pharmacol 69:771–777

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a starting research grant No. 31010300010339, funded by the Nanjing First Hospital, Nanjing Medical University, China; a grant No. BK 2012525, funded by the Jiangsu Natural Science Foundation (JSNSF), China; and a starting research grant (No. 2012–258), funded by the Ministry of Human Resources and Social Security, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Guang Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Xie, HG., Zhang, YD. (2013). Pharmacogenomics and Personalized Medicine of the Antiplatelet Drugs. In: Barh, D., Dhawan, D., Ganguly, N. (eds) Omics for Personalized Medicine. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1184-6_22

Download citation

Publish with us

Policies and ethics