Skip to main content

Tectonic Relationships Between E-Type Cratonic and Ultra-High-Pressure (UHP) Diamond: Implications for Craton Formation and Stabilization

  • Conference paper
  • First Online:

Abstract

Many eclogite xenoliths from kimberlites show geochemical and isotopic signatures compatible with an origin by subduction of oceanic crustal rocks, and it has been proposed earlier that progressively metamorphosed coesite- and diamond-bearing eclogitic assemblages and coesite inclusions in E-type diamonds may be viewed as an expression of Archean and Proterozoic UHP metamorphic events. Yet the observation that kimberlite-born cratonic eclogitic diamonds and diamonds in UHP metamorphic terranes lie on opposite ends of the geological age spectrum, is still commonly used to infer that UHP metamorphism is a Neoproterozoic or younger process that was not possible in a much hotter Archean Earth. The present paper re-evaluates the UHP model for the Archean eclogitic upper mantle sample by discussing (1) examples for igneous exhumation of subducted Phanerozoic and Proterozoic UHP eclogites and diamonds; (2) seismic images showing that tectonic accretion of oceanic lithosphere was a major factor during assembly of Paleoproterozoic and Archean cratons, and (3) recently discovered Archean metabasic eclogites representing the oldest surface record for subduction zone metamorphism. It is concluded that crustal UHP melanges and the diamondiferous eclogite upper mantle sample are complementary end products of subduction zone metamorphism. Lower density crustal melanges are tectonically exhumed soon after continental or microcontinental collision. The mantle eclogites and their E-type cratonic diamonds are parts of the higher density oceanic slab subducted prior to collision and accreted to the roots of microcontinental nuclei. They had long mantle residence times and could be exhumed only when picked up by younger igneous transport media (e.g. kimberlites). As shown by ~2.9 Ga ages of the oldest known eclogitic diamonds and xenoliths with subduction signatures, deep subduction along UHP-gradients began latest in the Mesoarchean, producing lithospheric roots sufficiently thick and cool to extend into the diamond stability field. The range of Proterozoic E-type diamond ages on several diamondiferous cratons, even within individual kimberlites, suggests that craton roots were repeatedly modified during the Proterozoic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott D (1991) The case for accretion of the tectosphere by buoyant subduction. Geophys Res Lett 18:585–588

    Article  Google Scholar 

  • Anczkiewicz B, Platt JP, Thirwall MF, Wakabayashi J (2004) Franciscan subduction off to a slow start: evidence from high-precision Lu-Hf garnet ages on high-grade blocks. Earth Planet Sci Lett 225:147–161

    Article  Google Scholar 

  • Aulbach S, Stachel T, Creaser RA, Heaman LM, Shirey SB, Muehlenbachs K, Eichenberg D, Harris JW (2009) Sulphide survival and diamond genesis during formation and evolution of Archaean subcontinental lithosphere: a comparison between the slave and Kaapvaal cratons. Lithos 112S:747–775

    Article  Google Scholar 

  • Barron LM, Lishmund SR, Oakes GM, Barron BJ (1994) Subduction diamonds in New South Wales: implications for exploration in eastern Australia. Q Geol Surv NSW 46:4–7

    Google Scholar 

  • Barron LM, Lishmund SR, Oakes GM, Barron BJ, Sutherland FL (1996) Subduction model for the origin of some diamonds in the phanerozoic of eastern New South Wales. Aust J Earth Sci 43:257–267

    Article  Google Scholar 

  • Barron BJ, Barron LM, Duncan G (2005) Eclogitic and ultrahigh-pressure crustal garnets and their relationships to phanerozoic subduction diamonds, Bingara area, New England fold belt, eastern Australia. Econ Geol 100:1565–1582

    Article  Google Scholar 

  • Barron LM, Barron BJ, Mernagh TP, Birch WD (2008) Ultrahigh pressure macro diamonds from Copeton (New South Wales, Australia), based on Raman spectroscopy of inclusions. Ore Geol Rev 34:76–86

    Article  Google Scholar 

  • Beard AD, Downes H, Hegner E, Sablukov SM (2000) Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types. Lithos 51:47–73

    Article  Google Scholar 

  • Bostock MG (1997) Anisotropic upper-mantle stratigraphy and architecture of the Slave craton. Nature 390:392–395

    Article  Google Scholar 

  • Bostock MG (1998) Mantle stratigraphy and evolution of the Slave province. J Geophys Res B103:21183–21200

    Article  Google Scholar 

  • Calvert AJ, Ludden JN (1999) Archean continental assembly in the southeastern Superior province of Canada. Tectonics 18:412–429

    Article  Google Scholar 

  • Cartigny P, Chinn I, Viljoen F, Robinson DN (2004) Early Proterozoic ultrahigh pressure metamorphism: evidence from microdiamonds. Science 304:853–855

    Article  Google Scholar 

  • Chinn I, Kyser K, Viljoen F (2000) Microdiamonds from the thirsty lake (Akluilak) dykes, northwest territories, Canada. J Conf Abstr 5(2):307–308

    Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the western Alps: a first record and some consequences. Contrib Mineral Petrol 86:107–118

    Article  Google Scholar 

  • Coleman RG, Wang X (1995) Ultrahigh pressure metamorphism. Cambridge University Press, Cambridge, p 510

    Book  Google Scholar 

  • Coney PJ, Reynolds SJ (1977) Cordilleran Benioff zones. Nature 270:403–405

    Article  Google Scholar 

  • Cook FA, Erdmer P (2005) An 1800 km cross section of the lithosphere through the northwestern North American plate: lessons from 4.0 billion years of Earth’s history. Can J Earth Sci 42:1295–1311

    Article  Google Scholar 

  • Cook FA, van der Velden AJ, Hall KW, Roberts BJ (1999) Frozen subduction in Canada’s northwest territories: lithoprobe deep lithospheric reflection profiling of the western Canadian shield. Tectonics 18:1–24

    Article  Google Scholar 

  • Craven JA, Kurtz RD, Boerner DE, Skulski T, Spratt J, Ferguson IJ, Wu X, Bailey RC (2001) Conductivity of western Superior province upper mantle in northwestern Ontario. Geological Survey of Canada, Current Research, Canada, p E6

    Google Scholar 

  • Davies RM, O’Reilly SY, Griffin WL (2002) Multiple origins of alluvial diamonds from New South Wales, Australia. Econ Geol 97:109–123

    Article  Google Scholar 

  • de Wit MJ, de Ronde CEJ, Tredoux M, Roering C, Hart RJ, Armstrong RA, Green RWE, Peberdy E, Hart RA (1992) Formation of an Archean continent. Nature 357:553–562

    Article  Google Scholar 

  • Dickinson WR (1997) Tectonic implications of cenozoic volcanism in coastal California. Geol Soc Am Bull 109:936–954

    Article  Google Scholar 

  • Dickinson WR, Snyder WS (1978) Plate tectonics of the Laramide orogeny. Geol Soc Am Mem 151:355–366

    Article  Google Scholar 

  • Ernst WG (2006) Preservation/exhumation of ultrahigh-pressure subduction complexes. Lithos 92:321–335

    Article  Google Scholar 

  • Ernst WG (2009) Archean plate tectonics, rise of proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior. Gondwana Res 15:243–253

    Article  Google Scholar 

  • Gurney J.J, Helmstaedt HH, Le Roex AP, Nowicki TE, Richardson SH, Westerlund KJ (2005) Diamonds: crustal distribution and formation processes in time and space and an integrated deposit model. In: Economic geology 100th anniversary volume, pp 143–177

    Google Scholar 

  • Gurney JJ, Helmstaedt H, Richardson SH, Shirey SB (2010) Diamonds through time. Econ Geol 105:689–712

    Article  Google Scholar 

  • Hamilton WB (1998) Archean tectonics and magmatism. Int Geol Rev 40:1–39

    Article  Google Scholar 

  • Heaman LM, Creaser RA, Cookenboo HO (2002) Extreme enrichment of high field strength elements in Jericho eclogite xenoliths: a cryptic record of Paleoproterozoic subduction, partial melting, and metasomatism beneath the Slave craton, Canada. Geology 30:507–510

    Article  Google Scholar 

  • Heaman LM, Creaser RA, Cookenboo HO, Chacko T (2006) Multi-stage modification of the northern Slave mantle lithosphere: evidence from zircon- and diamond-bearing eclogite xenoliths entrained in Jericho kimberlite, Canada. J Petrol 47:821–858

    Article  Google Scholar 

  • Helmstaedt H (2009) Crust-mantle coupling revisited: the Archean Slave craton, NWT, Canada. Lithos 112S:1055–1068

    Article  Google Scholar 

  • Helmstaedt H, Doig R (1975) Eclogite nodules from kimberlite pipes of the Colorado Plateau - samples of subducted Franciscan-type oceanic lithosphere. Phys Chem Earth 9:95–111

    Article  Google Scholar 

  • Helmstaedt HH, Schulze DJ (1988) Eclogite-facies ultramafic xenoliths from Colorado Plateau diatreme breccias: comparison with eclogites in crustal environments, evaluation of the subduction hypothesis, and implications for eclogite xenoliths from diamondiferous kimberlites. In: Smith DC (ed) Eclogites and eclogite-facies rocks. Elsevier, New York, pp 387–450

    Google Scholar 

  • Helmstaedt HH, Schulze DJ (1989) Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In: Ross J (ed) Kimberlites and related rocks. Proceedings of 4th kimberlite Conference, Perth 1986, vol. 1, Geological Society of Australia, special publication 14, pp 358–368

    Google Scholar 

  • Helmstaedt HH, Schulze DJ (1991) Early to mid-Tertiary inverted metamorphic gradient under the Colorado Plateau: evidence from eclogite xenoliths in ultramafic microbreccias, Navajo volcanic field. J Geophys Res 96:13225–13235

    Article  Google Scholar 

  • Helmstaedt HH, Gurney JJ, Richardson SH (2010) Ages of cratonic diamond and lithosphere evolution: constraints on Precambrian tectonics and diamond exploration. Can Mineral 48:1385–1408

    Article  Google Scholar 

  • Hoffman PF (1989) Precambrian geology and tectonic history of North America. In: The Geology of North America—An Overview. Geological Society of America, Boulder, Colorado, pp 447–512

    Google Scholar 

  • Hyndman RD (1972) Plate motions relative to the deep mantle and the development of subduction zones. Nature 238:264–265

    Article  Google Scholar 

  • Hynes A (2008) Effects of a warmer mantle on the characteristics of Archean passive margins. Geol Soc Am Spec Pap 440:149–156

    Google Scholar 

  • Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77:295–316

    Article  Google Scholar 

  • Janse AJA (1994) Is Clifford’s rule still valid? Affirmative examples from around the world. In: Meyer HOA, Leonardos O (eds) Diamonds: characterization, genesis and exploration. Proceedings of the 5th international kimberlite conference 1991, Araxa, Brazil, vol 2, CPRM special publication 1B, pp 215–235

    Google Scholar 

  • Kaminsky FV, Sablukov SM, Sablukova LI, Shpanov VE, Zhuravlev DZ (1998) Diamondiferous minette dykes from the Parker Lake area, N.W.T., Canada. In: 7th international kimberlite conference, Cape Town, S.A., Extended Abstracts, pp 392–394

    Google Scholar 

  • Kendall JM, Sol S, Thomson CJ, White DJ, Asudeh L, Snell CS, Sutherland FH (2002) Seismic heterogeneity and anisotropy in the western Superior province, Canada: insights into the evolution of an Archean craton. In: Fowler CMR, Ebinger CJ, Hawkesworth CJ (eds) The early Earth: physical, chemical and biological development. Geological Society of London, special publications, vol 199, pp 27–44

    Google Scholar 

  • Kylander-Clark ARC, Hacker BR, Mattinson CG (2012) Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett 321–322:115–120

    Article  Google Scholar 

  • Langford EF, Morin JA (1976) The development of the Superior province of northwestern Ontario by merging island arcs. Am J Sci 276:1023–1034

    Article  Google Scholar 

  • Liou JG, Ernst WG, Zhang RY, Tsujimori T, Jahn BM (2009) Ultrahigh-pressure minerals and metamorphic terranes - The view from China. J Asian Earth Sci 35:199–231

    Article  Google Scholar 

  • Lipman PW, Protska HJ, Christiansen RL (1972) Cenozoic volcanism and plate-tectonic evolution of the western United States, I. Early and middle Cenozoic. Philos Trans R Soc Ser A 271:217–248

    Article  Google Scholar 

  • Liu L, Spasojevic S, Gurnis M (2008) Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science 322:934–938

    Article  Google Scholar 

  • Macrae ND, Armitage AE, Jones AL (1995) A diamondiferous lamprophyre dike, Gibson Lake area, northwest territories. Int Geol Rev 37:212–229

    Article  Google Scholar 

  • Macrae ND, Armitage AE, Miller AR, Roddick JC, Jones AL, Mudry MP (1996) The diamondiferous Akluilak lamprophyre dyke, Gibson Lake area, N.W.T. Geological Survey of Canada, Open File 3228, pp 101–107

    Google Scholar 

  • Maruyama S, Liou JG, Terabayashi M (1996) Blueschists and eclogites of the world and their exhumation. Int Geol Rev 38:485–594

    Article  Google Scholar 

  • Mercier J-P, Bostock MG, Audet P, Gaherty JB, Garnero EJ, Revenaugh J (2008) The teleseismic signature of fossil subduction: northwestern Canada. J Geophys Res 113:B04308. doi:04310.01029/02007JB005127

  • Mints M, Suleimanov A, Zamozhniaya N, Stupak V (2009) A three-dimensional model of the Early Precambrian crust under the southeastern Fennoscandian Shield: Karelia craton and Belomorian tectonic province. Tectonophysics 472:323–339

    Article  Google Scholar 

  • Mints MV, Belousova EA, Konilov AN, Natapov LM, Shchipansky AA, Griffin WL, O’Reilly SY, Dokukina KA, Kaulina TV (2010) Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology 38:739–742

    Article  Google Scholar 

  • Nixon PH (1995) The morphology and nature of primary diamondiferous occurrences. J Geochem Explor 53:41–71

    Article  Google Scholar 

  • Ogasawara Y (2005) Microdiamonds in ultrahigh-pressure metamorphic rocks. Elements 1:91–96

    Article  Google Scholar 

  • Okamoto K, Maruyama S (1999) The high-pressure synthesis of lawsonite in the MORB + H2O system. Am Mineral 84:362–373

    Google Scholar 

  • Oueity J, Clowes RM (2010) Paleoproterozoic subduction in northwestern Canada from near-vertical and wide-angle reflection data. Can J Earth Sci 47:35–52

    Article  Google Scholar 

  • Pearson DG, Snyder GA, Shirey SB, Taylor LA, Carlson RW, Sobolev NV (1995) Archean Re-Os age for Siberian eclogites and constraints on Archean tectonics. Nature (London) 374:711–713

    Article  Google Scholar 

  • Percival JA, Sanborn-Barrie M, Skulski T, Stott GM, Helmstaedt H, White DJ (2006) Tectonic evolution of the western Superior province from NATMAP and LITHOPROBE studies. Can J Earth Sci 43:1085–1117

    Article  Google Scholar 

  • Peterson TD, Lecheminant AN (1996) Ultrapotassic rocks of the Dubawnt Supergroup, District of Keewatin, N.W.T. In: Lecheminant AN, Richardson DG, Dilabio RNW, Richardson KA (eds) Searching for diamonds in Canada. Geological Survey of Canada, Open File 3228, pp 97–100

    Google Scholar 

  • Ringwood AE (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica Cosmochimica Acta 55:2083–2110

    Article  Google Scholar 

  • Roden MF, Smith D, Murthy VR (1990) Geochemical constraints on lithosphere composition and evolution beneath the Colorado Plateau. J Geophys Res 95:2811–2831

    Article  Google Scholar 

  • Ruiz L, McCandless TE, Helmstaedt HH (1998) Re-Os model ages for Eclogite Xenoliths from the colorado plateau, USA. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international kimberlite conference, vol 2, P.H. Nixon Volume, Cape Town, pp 736–740

    Google Scholar 

  • Schmidberger SS, Heaman LM, Simonetti A, Creaser RA, Cookenboo HO (2005) Formation of Paleoproterozoic eclogitic mantle, Slave province (Canada): insights from in situ Hf and U-Pb isotope analyses of mantle zircons. Earth Planet Sci Lett 240:621–633

    Article  Google Scholar 

  • Schmidberger SS, Simonetti A, Heaman LM, Creaser RA, Whiteford S (2007) Lu-Hf, in situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: evidence for Paleoproterozoic subduction beneath the Slave craton, Canada. Earth Planet Sci Lett 254:55–68

    Article  Google Scholar 

  • Schreyer W (1995) Ultradeep metamorphic rocks: a retrospective viewpoint. J Geophys Res 100:8353–8366

    Article  Google Scholar 

  • Schulze DJ, Helmstaedt H (1988) Coesite-sanidine eclogites from kimberlite: products of mantle fractionation or subduction. J Geol 96:435–443

    Article  Google Scholar 

  • Schulze DJ, Valley JW, Spicuzza MJ (2000) Coesite eclogites from the Roberts Victor kimberlite, South Africa. Lithos 54:23–32

    Article  Google Scholar 

  • Schulze DJ, Harte B, Valley JW, Brenan JM, Channer DMD (2003) Extreme crustal oxygen isotope signature preserved in coesite in diamond. Nature 423:68–70

    Article  Google Scholar 

  • Schulze DJ, Harte B, Valley JW, Channer DMD (2004) Evidence of subduction and crust-mantle mixing from a single diamond. Lithos 77:349–358

    Article  Google Scholar 

  • Shirey SB, Richardson SH (2004) Integrated models of diamond formation and craton evolution. Lithos 77:923–944

    Article  Google Scholar 

  • Shirey SB, Richardson SH (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:434–436

    Article  Google Scholar 

  • Skublov SG, Shchulina EV, Guseva NS, Malkovets VG, Golovin NN (2011) Geochemical characteristics of zircons from xenoliths in the V. Grib kimberlite pipe, Archangelsk diamondiferous province. Geochem Int 49:415–421

    Article  Google Scholar 

  • Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310:641–644

    Article  Google Scholar 

  • Smith D, Connelly JN, Manser K, Moser DE, Housh TB, McDowell FW, Mack LE (2004) Evolution of Navajo eclogites and hydration of the mantle wedge below the Colorado Plateau, southwestern United States. Geochem Geophys Geosyst 5:GC000675

    Google Scholar 

  • Smyth JR, Hatton CJ (1977) A coesite-sanidine grospydite from the Roberts Victor kimberlite. Earth Planet Sci Lett 34:284–290

    Article  Google Scholar 

  • Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnet from metamorphic rocks. Nature 343:742–746

    Article  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34:5–32

    Article  Google Scholar 

  • Stern RJ (2007) When and how did plate tectonics begin? Theoretical and empirical considerations. Chin Sci Bull 52:578–591

    Article  Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: mineralogy, petrography, and whole rock chemistry. J Geol 97:551–567

    Article  Google Scholar 

  • Tsujimori T, Matsumoto K, Wakabayashi J, Liou JG (2006) Franciscan eclogite revisited: revaluation of the P-T evolution of tectonic blocks from Tiburon Peninsula, California, U.S.A. Mineral Petrol 88:243–267

    Article  Google Scholar 

  • Usui T, Nakamura E, Kobayashi K, Maruyama S, Helmstaedt H (2003) Fate of the subducted Farallon plate inferred from eclogite xenoliths in the Colorado Plateau. Geology 31:589–592

    Article  Google Scholar 

  • Usui T, Nakamura E, Helmstaedt H (2006) Petrology and geochemistry of eclogite xenoliths from the Colorado Plateau: implications for the evolution of subducted crusts. J Petrol 47:929–964

    Article  Google Scholar 

  • White DJ, Musacchio G, Helmstaedt HH, Harrap RM, Thurston PC, van der Velden AJ, Hall K (2003) Images of a lower-crustal oceanic slab: direct evidence for tectonic accretion in the Archean western Superior province. Geology 31:997–1000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Helmstaedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Geological Society of India

About this paper

Cite this paper

Helmstaedt, H.H. (2013). Tectonic Relationships Between E-Type Cratonic and Ultra-High-Pressure (UHP) Diamond: Implications for Craton Formation and Stabilization. In: Pearson, D., et al. Proceedings of 10th International Kimberlite Conference. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1170-9_4

Download citation

Publish with us

Policies and ethics