Skip to main content

“Antitrust Policy” Versus “Industrial Policy”

  • Chapter
  • First Online:

Abstract

Put in the context of international trade, what is viewed as an industrial policy in the existing literature may be thought of as a type of antitrust policy to seek for a beggar-thy-neighbor effect by permitting (or promoting) its manufacturing sector to take anti-competitive actions. This study demonstrates that in order to retaliate against such an industrial policy, a country may suppress competition in its service sector. For this purpose, we build a simple partial equilibrium version of the Sanyal-Jones model and demonstrate that a state in which a country suppresses competition in its manufacturing sector at the same time that its trading partner country suppresses competition in its service sector can be supported as a Nash equilibrium. In our setting, antitrust policy on the service sector is an effective policy tool only for retaliation. In other words, perfect competition can be maintained throughout the world unless the exporting country adopts an anti-competitive industrial policy, thereby triggering a retaliatory action.

We wish to dedicate this paper to the late Professor Kalyan Sanyal, whose joint work with Ron Jones has heavily influenced our research. We are grateful to an anonymous referee for useful comments. This work has partially been supported by the Keio-Kyoto GCOE program and JSPS Science Grant #23000001.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For a general discussion on industrial policy, see Komiya et al. (1988).

  2. 2.

    Yano and Honryo (2010, 2011a, b) show that in the game in which only competition policies are adopetd, an asymmetric Nash equilibrium tends to emerge in which m = ∞ and \( m^{ * } \) < ∞. That result is known to be model specific; in other model specifications, it may hold that m < ∞ and \( m^{ * } \) < ∞ in a Nash equilibrium (see Yano and Dei (2007)).

References

  • Brander, J., & Spencer, B. (1985). Exports subsidies and international market share rivalry. Journal of International Economics, 18, 83–100.

    Article  Google Scholar 

  • De Stefano, M., & Rysman, M. (2010). Competition policy as strategic trade with differentiated products. Review of International Economics, 18, 758–771.

    Article  Google Scholar 

  • Feenstra, R. C. (2004). Advanced International Trade: Theory and Evidence. Princeton: Princeton University Press.

    Google Scholar 

  • Francois, J., & Horn, H. (2006). “Anti-trust in open economies,” Tinbergen Institute discussion paper TI 2006-006/2.

    Google Scholar 

  • Horn, H., & Levinsohn, J. (2001). Merger policies and trade liberalization. Economic Journal, 111, 244–273.

    Article  Google Scholar 

  • Honryo, T., & Yano, M. (2006). Short-run trade surplus creation in a two-sector setting. Japanese Economic Review, 57, 476–482.

    Article  Google Scholar 

  • Komiya, R., Okuno, M., & Suzumura, K. (1988). Industrial policy of Japan. New York: Academic Press.

    Google Scholar 

  • Ma, Y. (2009). Trade theorems in a model of vertical production chain. International Review of Economics & Finance, 18, 70–80.

    Article  Google Scholar 

  • Ota, R. (2006). Adjustability in production and dynamic effects of domestic competition policy. Journal of International Trade and Economic Development, 15, 431–439.

    Article  Google Scholar 

  • Richardson, M. (1999). Trade and competition policies: concordia discors? Oxford Economic Papers, 51, 649–664.

    Article  Google Scholar 

  • Sanyal, K., & Jones, R. (1982). The theory of trade in middle products. American Economic Review, 72, 16–31.

    Google Scholar 

  • Takahashi, R. (2005). Domestic competition policy and tariff policy compared. Japanese Economic Review, 56, 210–222.

    Article  Google Scholar 

  • Takahashi R., Kenzaki, J. & Yano, M. (2008). Competition policy as a substitute for tariff policy. In S. Marjit & E. Yu (Eds.), Contemporary and Emerging Issues in Trade Theory and Policy (pp. 397–415). Bingley: Emerald.

    Google Scholar 

  • Yano, M. (2001). Trade imbalance and domestic market competition policy. International Economic Review, 42, 729–750.

    Article  Google Scholar 

  • Yano, M., & Dei, F. (2003). Trade, vertical production chain, and competition policy. Review of International Economics, 11, 237–252.

    Article  Google Scholar 

  • Yano, M., & Dei, F. (2004). Optimal competition policy in a model of vertical production chain. In S. Katayama & H. W. Ursprung (Eds.), International economic policies in a globalized world (pp. 163–175). Berlin: Springer.

    Google Scholar 

  • Yano, M., & Dei, F. (2007). International game of domestic competition policies. Journal of Economics of Kwansei Gakuin University, 60, 15–27.

    Google Scholar 

  • Yano, M., & Honryo, T. (2010). Trade imbalances and harmonization of competition policies. Journal of Mathematical Economics, 46, 438–452.

    Article  Google Scholar 

  • Yano, M., & Honryo, T. (2011a). Fundamental difficulty underlying international harmonization of competition policies. International Journal of Economic Theory, 7, 111–118.

    Article  Google Scholar 

  • Yano, M., & Honryo, T. (2011b). A two-country game of competition policies. Review of International Economics, 19, 207–218.

    Article  Google Scholar 

  • Yano, M., Takahashi, R., & Kenzaki, J. (2006). Competition policy or tariff policy: Which is more effective? Asia-Pacific Journal of Accounting and Economics, 13, 163–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Yano .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Lemma 1

For mathematical simplicity, we introduce the following notations:

$$ \lambda = 1/n,\delta = 1/m,\;{\text{and }}\delta^{ * } = 1/m^{ * } . $$

Perfect competition policies in the three markets can be expressed as \( \lambda = 0,\;\delta = 0, \) and \( \delta^{ * } = 0. \) Lemma 1 can be rewritten as \( \partial \tilde{W}(\lambda ,\delta ,\delta^{ * } )/\partial \delta < 0 \) where \( W = \tilde{W}(\lambda ,\delta ,\delta^{ * } ). \) From (1) and (2), we obtain

$$ X = \frac{b - q}{a(1 + \delta )}, $$
(A.1)

and

$$ X^{ * } = \frac{b - q}{{a^{ * } (1 + \delta^{ * } )}}. $$
(A.2)

From these and (3), we have

$$ q = - BY + b $$
(A.3)

where

$$ \begin{aligned} B & = \frac{{a(1 + \delta )a^{ * } (1 + \delta^{ * } )}}{{a(1 + \delta ) + a^{ * } (1 + \delta^{ * } )}} \\ & = B(\delta ,\delta^{ * } ). \\ \end{aligned} $$
(A.4)

Then this and (4) yield

$$ Y = \frac{b - h}{B(1 + \lambda ) + g\lambda }. $$
(A.5)

Note that \( y = \lambda Y \) and \( c^{'} (y) = g\lambda Y + h. \)

The total surpluses of the home country are

$$ W = \frac{1}{2}(b - p)X + (p - q)X + Y\left[ {q - (\frac{1}{2}g\lambda Y + h)} \right], $$

where \( \frac{1}{2}g\lambda Y + h \) is the average variable cost of a manufacturing firm. A change in \( W \) is given by

$$ {\rm{d}}W = (p - q){\rm{d}}X + (Y - X){\rm{d}}q + \left[ {q - c^{'} (\lambda Y)} \right] {\rm{d}}Y, $$
(A.6)

because \( {\rm{d}}p = - a{\rm{d}}X \) and \( c^{'} (\lambda Y) = g\lambda Y + h. \)

Consider first the term \( \left[ {q - c^{'} (\lambda Y)} \right]{\rm{d}}Y \) of (A.6) and show that \( \left[ {q - c^{'} (\lambda Y)} \right]{\rm{d}}Y \ge 0 \) when \( {\rm{d}}\delta < 0. \) From (A.4) and (A.5), we have

$$ B_{\delta } = \frac{{aa^{ * 2} (1 + \delta^{ * } )^{2} }}{{\left[ {a(1 + \delta ) + a^{ * } (1 + \delta^{ * } )} \right]^{2} }}. $$
(A.7)

and

$$ Y_{\delta } = - \frac{{\left( {b - h} \right)(1 + \lambda )B_{\delta } }}{{\left[ {(1 + \lambda )B + g\lambda } \right]^{2} }}. $$
(A.8)

Because \( B_{\delta } > 0, \) then \( Y_{\delta } < 0. \) This implies that \( {\rm{d}}Y = Y_{\delta } d\delta > 0 \) when \( {\rm{d}}\delta < 0. \) We know that \( q - c^{'} (\lambda Y) \ge 0 \) from (4), so that \( \left[ {q - c^{'} (\lambda Y)} \right]dY \ge 0 \) when \( {\rm{d}}\delta < 0. \)

Next we consider the term \( (Y - X){\rm{d}}q \) of (A.6) and show that \( (Y - X){\rm{d}}q \ge 0 \) when \( {\rm{d}}\delta < 0. \) Differentiate (A.3) totally and use (A.8) and (A.5) to have

$$ {\rm{d}}q = - B_{\delta } \frac{{\left( {b - h} \right)g\lambda }}{{\left[ {(1 + \lambda )B + g\lambda } \right]^{2} }}{\rm{d}}\delta . $$
(A.9)

This implies that \( {\rm{d}}q > 0 \) if \( \lambda > 0 \) and \( {\rm{d}}\delta < 0. \) If \( \lambda = 0,\,{\rm{d}}q = 0 \) because \( q \) is fixed at \( h. \) Since the home country is an exporting country, \( Y - X > 0. \) Thus we have \( (Y - X){\rm{d}}q \ge 0 \) when \( {\rm{d}}\delta < 0. \)

Finally consider the term \( (p - q){\rm{d}}X \) of (A.6). Differentiate (A.1) totally and use (A.3), (A.4), (A.5), (A.7) and (A.9) to have

$$ \begin{aligned} {\rm{d}}X = & \frac{b - h}{{a(1 + \delta )^{2} \left[ {(1 + \lambda )B + g\lambda } \right]^{2} }}\left\{ {g\lambda \left[ {(1 + \delta )B_{\delta } - B} \right] - B^{2} (1 + \lambda )} \right\}{\rm{d}}\delta \\ = & \frac{b - h}{{a(1 + \delta )^{2} \left[ {(1 + \lambda )B + g\lambda } \right]^{2} }}\left\{ {g\lambda \left[ { - \frac{{a(1 + \delta )a^{ * } (1 + \delta^{ * } )a(1 + \delta )}}{{\left[ {a(1 + \delta ) + a^{ * } (1 + \delta^{ * } )} \right]^{2} }}} \right] - B^{2} (1 + \lambda )} \right\}{\rm{d}}\delta \\ \end{aligned} $$

This shows that \( {\rm{d}}X > 0 \) when \( {\rm{d}}\delta < 0 \). Because we consider the case in which \( {\rm{d}}\delta < 0, \) we exclude the case in which \( \delta = 0, \) that is, \( p - q = 0. \) Thus \( (p - q){\rm{d}}X > 0 \) when \( {\rm{d}}\delta < 0. \)

Since, in (A.6), the first term is positive and the second and third terms are nonnegative, we can show that \( {\rm{d}}W > 0 \) when \( {\rm{d}}\delta < 0. \) This proves Lemma \( 1 \).

1.2 Proof of Lemma 2

Lemma \( 2 \) can be rewritten as \( \partial \tilde{W}^{*} (\lambda ,0,0)/\partial \delta^{ * } > 0 \) if \( \lambda > 0\; \)where \( W^{ * } = \tilde{W}^{*} (\lambda ,\delta ,\delta^{ * } ) \). The total surpluses of the foreign country are

$$ W^{ * } = \frac{1}{2}(b - p^{ * } )X^{ * } + (p^{ * } - q)X^{ * } . $$

A change in \( W^{ * } \) is given by

$$ {\rm{d}}W^{ * } = - X^{ * } {\rm{d}}q. $$
(A.10)

We have used \( {\rm{d}}p^{ * } = - X^{ * } {\rm{d}}q, \) and \( p^{ * } - q = 0 \) because \( \delta^{ * } = 0. \) In a similar fashion to (A.9), we have

$$ {\rm{d}}q = - B_{{\delta^{ * } }} \frac{{\left( {b - h} \right)g\lambda }}{{\left[ {(1 + \lambda )B + g\lambda } \right]^{2} }}{\rm{d}}\delta^{ * } , $$
(A.11)

where \( B_{{\delta^{ * } }} = \frac{{a^{2} a^{ * } }}{{\left( {a + a^{ * } } \right)^{2} }} > 0. \) From (A.10) and (A.11), we have

$$ {\rm{d}}W^{ * } = X^{ * } B_{{\delta^{ * } }} \frac{{\left( {b - h} \right)g\lambda }}{{\left[ {(1 + \lambda )B + g\lambda } \right]^{2} }}{\rm{d}}\delta^{ * } , $$

which implies that if \( \lambda > 0,\,{\rm{d}}W^{ * } > 0 \) when \( {\rm{d}}\delta^{ * } > 0. \) This proves Lemma 2.

1.3 Proof of Lemma 3

Lemma 3 can be rewritten as \( \partial W(0,0,0)/\partial \lambda > 0.\; \)A change in \( W \) is given by

$$ \begin{aligned} {\rm{d}}W &= \frac{1}{2}\left[ {(b - p){\rm{d}}X -X{\rm{d}}p} \right] + (p - q){\rm{d}}X + X({\rm{d}}p - {\rm{d}}q)\hfill \\ &\quad + \left[ {q -(\frac{1}{2}g\lambda Y + h)} \right]{\rm{d}}Y + Y\left[ {{\rm{d}}q -{\rm{d}}(\frac{1}{2}g\lambda Y + h)} \right] \hfill \\ &= \left[{\frac{1}{2}(b - p) + (p - q)} \right]{\rm{d}}X +\frac{1}{2}X{\rm{d}}p + (Y - X){\rm{d}}q \hfill\\ & \quad + \left[ {q - (\frac{1}{2}g\lambda Y + h)} \right]{\rm{d}}Y -\frac{1}{2}gY(Y{\rm{d}}\lambda + \lambda {\rm{d}}Y) \hfill \\ &=\left[ {\frac{1}{2}(b - p) + (p - q)} \right]{\rm{d}}X +\frac{1}{2}X{\rm{d}}p + (Y - X){\rm{d}}q \hfill \\&\quad + \left[ {q - (g\lambda Y + h)}\right]{\rm{d}}Y - \frac{1}{2}gY^{2} {\rm{d}}\lambda \hfill \\ &=\left[ {\frac{1}{2}(b - p) + (p - q) - \frac{1}{2}aX}\right]{\rm{d}}X + (Y - X){\rm{d}}q + \left[ {q - (g\lambda Y + h)}\right]{\rm{d}}Y - \frac{1}{2}gY^{2} {\rm{d}}\lambda \hfill \\ &=(p - q){\rm{d}}X + (Y - X){\rm{d}}q + \left[ {q - (g\lambda Y + h)}\right]{\rm{d}}Y - \frac{1}{2}gY^{2} {\rm{d}}\lambda \hfill \\ \end{aligned} $$

The coefficient of \( {\rm{d}}X \) is zero because \( \delta = 0. \) The coefficient of \( {\rm{d}}Y \) is also zero because \( \lambda = 0. \) Then we have

$$ {\rm{d}}W = (Y - X){\rm{d}}q - \frac{1}{2}gY^{2} {\rm{d}}\lambda . $$

Next we consider the relation between \( {\rm{d}}q \) and \( {\rm{d}}\lambda . \) Note that in (A.5), \( B \) is fixed when \( \delta ,\delta^{ * } \) are fixed at zero:

$$ B = \frac{{aa^{ * } }}{{a + a^{ * } }}. $$
(A.12)

From (A.5), we have

$$ Y_{\lambda } = - \frac{(b - h)(B + g)}{{B^{2} }}, $$

when \( \lambda = 0. \) From this and \( q = - BY + b, \) we have

$$ {\rm{d}}q = \frac{{\left( {b - h} \right)(B + g)}}{B}{\rm{d}}\lambda . $$

Noting that \( Y = \frac{b - h}{B} \) with (A.12) and \( X = \frac{b - q}{a} \) with \( q = h, \) we can rewrite the coefficient of \( {\rm{d}}q,Y - X, \) as

$$ Y - X = \frac{b - h}{{a^{ * } }}. $$

Therefore

$$ \begin{aligned} {\rm{d}}W &= \left\{ {(Y - X)\frac{{\left( {b - h} \right)(B + g)}}{B} - \frac{1}{2}g\left( {\frac{b - h}{B}} \right)^{2} } \right\}{\rm{d}}\lambda \\ &= \frac{{\left( {b - h} \right)^{2} }}{B}\left[\frac{B + g}{{a^{ * } }} - \frac{g}{2B}\right]{\rm{d}}\lambda \\ &= \frac{{\left( {b - h} \right)^{2} }}{B}\left[\frac{B}{{a^{ * } }} + \frac{g}{{a^{ * } }} - \frac{g}{2B}\right]{\rm{d}}\lambda \\ &= \frac{{\left( {b - h} \right)^{2} }}{B}\left[\frac{a}{{a + a^{ * } }} + \frac{g}{{a^{ * } }} - \frac{g}{2B}\right]{\rm{d}}\lambda \\ &= \frac{{\left( {b - h} \right)^{2} }}{B}\left[\frac{a}{{a + a^{ * } }} + \frac{g}{{a^{ * } }} - \frac{g}{2}\frac{{a + a^{ * } }}{{aa^{ * } }}\right]{\rm{d}}\lambda \\ &= \frac{{\left( {b - h} \right)^{2} }}{B}\left[\frac{{a^{2} a^{ * } + ga\left( {a + a^{ * } } \right) - \frac{g}{2}\left( {a + a^{ * } } \right)^{2} }}{{aa^{ * } \left( {a + a^{ * } } \right)}}\right]{\rm{d}}\lambda \\ &= \frac{{\left( {b - h} \right)^{2} }}{{Baa^{ * } \left( {a + a^{ * } } \right)}}\left[a^{2} a^{ * } + ga\left( {a + a^{ * } } \right) - \frac{g}{2}\left( {a + a^{ * } } \right)^{2} \right]{\rm{d}}\lambda \\ &= \frac{{\left( {b - h} \right)^{2} }}{{a^{2} a^{ * 2} }}\left[a^{2} a^{ * } + ga\left( {a + a^{ * } } \right) - \frac{g}{2}\left( {a^{2} + 2aa^{ * } + a^{ * 2} } \right)\right]{\rm{d}}\lambda \\ &= \frac{{\left( {b - h} \right)^{2} }}{{a^{2} a^{ * 2} }}\left[a^{2} a^{ * } + \frac{g}{2}a^{2} - \frac{g}{2}a^{ * 2} \right]{\rm{d}}\lambda \\ &= \frac{{\left( {b - h} \right)^{2} }}{{a^{2} a^{ * 2} }}\left[(a^{ * } + \frac{g}{2})a^{2} - \frac{g}{2}a^{ * 2}\right]{\rm{d}}\lambda \\ \end{aligned} $$

Thus \( \partial \tilde{W}(0,0,0)/\partial \lambda \begin{array}{l} >\\ =\\ <\end{array}0 \) as

$$ (a^{ * } + \frac{g}{2})a^{2} - \frac{g}{2}a^{ * 2}\begin{array}{l} >\\ =\\ <\end{array} 0$$
$$(a^{ * } + \frac{g}{2})a^{2}\begin{array}{l} >\\ =\\ <\end{array} \frac{g}{2}a^{ * 2}$$
$$a\begin{array}{l} >\\ =\\ <\end{array} \sqrt {\frac{\frac{g}{2}}{{a^{ * } + \frac{g}{2}}}} \,a^{ * } $$

Lemma 3 holds if and only if \( a > \sqrt {\frac{\frac{g}{2}}{{a^{ * } + \frac{g}{2}}}} {\kern 1pt} a^{ * } . \)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Yano, M., Honryo, T., Dei, F. (2014). “Antitrust Policy” Versus “Industrial Policy”. In: Acharyya, R., Marjit, S. (eds) Trade, Globalization and Development. Springer, India. https://doi.org/10.1007/978-81-322-1151-8_2

Download citation

Publish with us

Policies and ethics