Skip to main content

Industrial Enzyme Applications in Biorefineries for Starchy Materials

  • Chapter
  • First Online:
Advances in Enzyme Biotechnology

Abstract

This chapter reviews recent advances in technology developments in biorefinery industries through enzymatic approaches where various starchy materials have been used as feedstock for biofuel and various syrup productions. It further discusses the enzymes discovery, industrial challenges, and how enzymatic-based approaches help different industries to develop environmentally sustainable and cost-effective solutions by making industrial process into more simplified without compromising the product and by-product yields and their qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aehle W (2007) Enzymes in industry: production and applications, 3rd edn. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim

    Google Scholar 

  • Aggarwal NK, Nigam P, Singh D et al (2001) Process optimization for the production of sugar for the bioethanol industry from sorghum, a nonconventional source of starch. World J Microbiol Biotechnol 17:411–415

    CAS  Google Scholar 

  • Ahmed MJ, Khadom AA et al (2009) Optimization hydrogenation process of D-glucose to D-sorbitol over Raney nickel catalyst. Eur J Sci Res 30:294–304

    Google Scholar 

  • Aiyer PV (2005) Amylases and their applications. Afr J Biotechnol 4:1525–1529

    CAS  Google Scholar 

  • Akin H, Brandam C, Meyer XM et al (2008) A model for pH determination during alcoholic fermentation of a grape must by Saccharomyces cerevisiae. Chem Eng Process 47:1986–1993

    CAS  Google Scholar 

  • Alexander RJ (1992) Maltodextrins. Production, properties and applications. In: Schenk EW, Hebeda RE (eds) Starch hydrolysis products. VCH, New York

    Google Scholar 

  • Baron M, Chamayou A, Marchioro L et al (2005) Radicalar probes to measure the action of energy on granular materials. Adv Powder Technol 16:199–211

    CAS  Google Scholar 

  • Bellissimi E, Ingledew WM (2005) Analysis of commercially available active dry yeast used for industrial fuel ethanol production. J Am Soc Brew Chem 63:107–112

    CAS  Google Scholar 

  • Bhosale SH, Rao MB, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Mol Biol Rev 60:280–300

    CAS  Google Scholar 

  • Blanchard PH (1992) Technology of corn wet milling and associated processes. Elsevier, Amsterdam, chaps. 1 and 3

    Google Scholar 

  • Bornscheuer UT, Pohl M (2001) Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 5:137–143

    PubMed  CAS  Google Scholar 

  • Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25

    PubMed  CAS  Google Scholar 

  • Böttcher D, Bornscheuer UT (2010) Protein engineering of microbial enzymes. Curr Opin Microbiol 13:274–282

    PubMed  Google Scholar 

  • Bozell JJ (2001) Chemicals and materials from renewable resources, ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  • Breisha GZ (2010) Production of 16% ethanol from 35% sucrose. Biomass Bioenerg 34:1243–1249

    CAS  Google Scholar 

  • Buchholz K, Kasche V, Bornscheuer UT (2005) Biocata-lysts and enzyme technology. Wiley-VCH, Weinheim

    Google Scholar 

  • Bull AT, Goodfellow M, Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 46:219–252

    PubMed  CAS  Google Scholar 

  • Bull AT, Bunch AW, Robinson GK (1999) Biocatalyst for clean industrial products and processes. Curr Opin Microbiol 2:246–251

    PubMed  CAS  Google Scholar 

  • Bvochora JM, Read JS, Zvauya R (2000) Application of very high gravity technology to the cofermentation of sweet stem sorghum juice and sorghum grain. Ind Crop Prod 11:11–17

    CAS  Google Scholar 

  • Cauvain SP, Young LS (2001) Baking problems solved. Woodhead Publishing Ltd., Cambridge/England, pp 25–26

    Google Scholar 

  • Cawley RW, Mitchell TA (1968) Inhibition of wheat α-amylase by bran phytic acid. J Sci Food Agric 19:106–108

    Google Scholar 

  • Chandel AK, Rudravaram R, Rao LV et al (2007) Industrial enzymes in bioindustrial sector development: an Indian perspective. J Comm Biotechnol 13:283–291

    Google Scholar 

  • Chaplin MF, Bucke C (1990) The large-scale use of enzymes in solution. In: Chaplin MF, Bucke C (eds) Enzyme technology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Chen WP, Anderson AW (1979) Purification, immobilization and some properties of glucose isomerase from Streptomyces flavogriseus. Appl Environ Microbiol 38:1111–1119

    PubMed  CAS  Google Scholar 

  • Ching CB, Ruthven DM (1985) An experimental study of counter-current adsorption system. Chem Eng Sci 40:877–891

    CAS  Google Scholar 

  • Christophersen C, Andersen E, Jakobsen TS et al (1997) Xylanase in wheat separation. Starch-Stärke 49:5–12

    CAS  Google Scholar 

  • Chronakis LS (1998) On the molecular characteristics, compositional properties and structural-functional mechanisms of maltodextrins. Crit Rev Food Sci Nutr 38:599–637

    PubMed  CAS  Google Scholar 

  • Cotillon M (1992) Refining: carbon treatment, reactive precoats and ion exchange. In: Schenck F, Hebeda R (eds) Starch hydrolysis products. VCH, New York

    Google Scholar 

  • Crabb WD, Shetty JK (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2:252–256

    PubMed  CAS  Google Scholar 

  • Daiuto E, Cereda M, Sarmento S et al (2005) Effects of extraction methods on yam (Dioscorea alata) starch characteristics. Starch-Stärke 57:153–160

    CAS  Google Scholar 

  • De Cordt S, Hendrickx M, Maesmans G et al (1994) The influence of polyalcohols and carbohydrates on the thermostability of α-amylase. Biotechnol Bioeng 43:107–114

    PubMed  Google Scholar 

  • Demirel G, Ozcetin G, Sahin F et al (2006) Semiin-terpenetrating polymer networks (IPNs) for entrapment of glucose isomerase. React Funct Polym 66:389–394

    CAS  Google Scholar 

  • DeSantis G, Jones JB (1999) Chemical modification of enzymes for enhanced functionality. Curr Opin Microbiol 10:324–330

    CAS  Google Scholar 

  • Devantier R, Pedersen S, Olsson L (2005) Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Appl Microbiol Biotechnol 68:622–629

    PubMed  CAS  Google Scholar 

  • Dokic-Baucal L, Dokic P, Jakovljevic J (2004) Influence of different maltodextrins on properties of O/W emulsions. Food Hydrocoll 18:233–239

    CAS  Google Scholar 

  • Dombek KM, Ingram LO (1987) Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. Appl Environ Microbiol 53:1286–1291

    PubMed  CAS  Google Scholar 

  • Duan G (2009) Impact of the industrial enzyme progress on the production of chemicals. Chin J Biotechnol 25:1808–1818

    CAS  Google Scholar 

  • Duan G, Qian Y, Rafael SF, Shetty J (2010a) Improved production of maltotetraose syrup using a Pseudomonas saccharophila moltoteraohydrolase variant and a debranching enzyme. WO/2010/132157

    Google Scholar 

  • Duan G, Qian Y, Shetty J et al (2010b) Starch separation process. PCT WO2010/129648

    Google Scholar 

  • Duan G, Dunn-Coleman N, Lantero O et al (2011a) Acid fungal protease in fermentation of insoluble starch substrates. US8075694 B2, December 13 2011

    Google Scholar 

  • Duan G, Shetty J, Vadakoot J et al (2011b) Grain composition containing prebiotic iso-maltooligosaccharides and method of making and using same. US Patent 7,993,689 B2

    Google Scholar 

  • Dzogbefia VP, Buamah R, Oldham JH (1999) The controlled fermentation of cocoa (Theobroma cacao L): enzymatic process and associated physicochemical changes in cocoa sweatings. Food Biotechnol 13:1–12

    CAS  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:33–50

    Google Scholar 

  • FAO (2002) Partnership formed to improve cassava, staple food for 600 million people. Food and Agriculture Organization of the United Nations, Rome, http://www.fao.org/english/newsroom/news/2002/10541-en.html

    Google Scholar 

  • Fernando S, Adhikari S, Chandrapal C et al (2006) Biorefineries: current status, challenges, and future direction. Energy Fuel 20:1727–1737

    CAS  Google Scholar 

  • Gantelet H, Duchiron F (1999) A new pullulanase from a hyperthermophilic archaeon for starch hydrolysis. Biotechnol Lett 21:71–75

    CAS  Google Scholar 

  • Gibiński M (2008) Production of oat hydrolysates with a low degree of starch saccharification. Pol J Food Nutr Sci 58:295–300

    Google Scholar 

  • Gibreel JR, Sandercock J, Lan LA et al (2009) Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstocks for bioethanol production and value-added products. Appl Environ Microbiol 75:1363–1372

    PubMed  CAS  Google Scholar 

  • Göğüş F, Bozkurt H, Eren S (1998) Kinetics of Maillard reactions between the major sugars and amino acids of boiled grape juice. LWT- Food Sci Technol 31:196–200

    Google Scholar 

  • Gohel V, Duan G (2012a) Conventional process for ethanol production from Indian broken rice and pearl millet. Bioprocess Biosyst Eng. doi:10.1007/s00449-012-0717-1

    PubMed  Google Scholar 

  • Gohel V, Duan G (2012b) No-cook process for ethanol production using Indian broken rice and pearl millet. Int J Microbiol. doi:10.1155/2012/680232

    PubMed  Google Scholar 

  • Gohel V, Singh A, Maisuria V, Phadnis A, Chhatpar HS (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 5:54–72

    Google Scholar 

  • Gopinathan MC, Sudhakaran R (2009) Biofuels: opportunities and challenges in India. In Vitro Cell Dev Biol-Plant 45:350–371

    Google Scholar 

  • Gough S, Brady D, Nigam P et al (1997) Production of ethanol from molasses at 45°C using alginate-immobilized Kluyveromyces marxianus IMB3. Bioprocess Eng 16:389–392

    CAS  Google Scholar 

  • Grafelman DD, Meagher MM (1995) Liquefaction of starch by a single-screw extruder and post-extrusion static-mixer reactor. J Food Eng 24:529–542

    Google Scholar 

  • Gromada A, Fiedurek J, Szczodrak J (2008) Isoglucose production from raw starchy materials based on a two stage enzymatic system. Pol J Microbiol 57:141–148

    PubMed  CAS  Google Scholar 

  • Guiraud JP, Bourgi J, Stervinou M et al (1987) Isolation of a respiratory-deficient Kluyveromyces fragilis mutant for the production of ethanol from Jerusalem artichoke. Biotechnol Bioeng 29:850–858

    PubMed  CAS  Google Scholar 

  • Guo ZP, Zhang L, Ding ZY et al (2010) Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface. Yeast 27:1017–1027

    PubMed  CAS  Google Scholar 

  • Gupta R, Beg QK, Lorentz P (2002) Bacterial alkaline proteases: molecular approaches and industrial application. Appl Microbiol Biotechnol 59:15–32

    PubMed  CAS  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    PubMed  CAS  Google Scholar 

  • Herrera S (2004) Industrial biotechnology- a chance at redemption. Nat Biotechnol 22:671–675

    PubMed  CAS  Google Scholar 

  • Howling D (1992) Glucose syrup: production, properties and applications. In: Schenck F, Hebeda R (eds) Starch hydrolysis products. VCH, New York

    Google Scholar 

  • Huitron C, Limon-Lason J (1978) Immobilization of glucose isomerase to ion change materials. Biotechnol Bioeng 20:1377–1391

    CAS  Google Scholar 

  • Hull P (2009) Glucose syrups: technology and applications. Wiley, West Sussex

    Google Scholar 

  • Illanes A, Zúñiga ME, Contreras S et al (1992) Reactor design for the enzymatic isomerization of glucose to fructose. Bioprocess Biosyst Eng 7:5199–5204

    Google Scholar 

  • Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem 43:1019–1032

    CAS  Google Scholar 

  • Jenkins PJ, Donald AM (1998) Gelatinisation of starch: a combined Saxs/waxs/dsc and Sans study. Carbohydr Res 308:133–147

    CAS  Google Scholar 

  • Johnston DB, Singh V (2001) Use of protease to reduce steep time and SO2 requirements in a corn wet-milling process. Cereal Chem 78:405–411

    CAS  Google Scholar 

  • Johnston DB, Singh V (2004) Enzymatic milling of corn: optimization of soaking, grinding, and enzyme incubation steps. Cereal Chem 81:626–632

    CAS  Google Scholar 

  • Kaneko T, Yokoyama A, Suzuki M (1995) Digestibility characteristics of isomaltooligosaccharides in comparison with several saccharides using the rat jejunum loop method. Biosci Biotechnol Biochem 59:1190–1194

    PubMed  CAS  Google Scholar 

  • Karuppiah R, Peschel A, Grossmann IE et al (2008) Energy optimization of an ethanol plant. AICHE J 54:1499–1525

    CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375

    Google Scholar 

  • Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5695–5702

    Google Scholar 

  • Kimura T, Nakakuki T (1990) Maltotetraose, a new saccharide of tertiary property. Starch-Stärke 42:151–157

    CAS  Google Scholar 

  • Kitamoto K, Oda K, Gomi K et al (1991) Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene. Appl Environ Microbiol 57:306–306

    Google Scholar 

  • Klibanov AM (1983) Stabilization of enzymes against thermal inactivation. Adv Appl Microbiol 29:1–28

    PubMed  CAS  Google Scholar 

  • Kłosowski G, Mikulski D, Czupryński B et al (2010) Characterisation of fermentation of high-gravity maize mashes with the application of pullulanase, proteolytic enzymes and enzymes degrading non-starch polysaccharides. J Biosci Bioeng 109:466–471

    PubMed  Google Scholar 

  • Kuriki T, Yanase M, Takata H et al (1993) A new way of producing isomalto-oligosaccharide syrup by using the transglycosylation reaction of neopullulanase. Appl Environ Microbiol 59:953–959

    PubMed  CAS  Google Scholar 

  • Lai P, Chi-Juan S, Chiun-CR W (2011) Effects of oligosaccharides on phase transition temperatures and rheological characteristics of waxy rice starch dispersion. J Sci Food Agric. doi:10.1002/jsfa.4712

    Google Scholar 

  • Lee C, Saha BC, Zeikus JG (1990) Characterization of thermoanaerobacter glucose isomerase in relation to saccharidase synthesis and development of single-step processes for sweetener production. Appl Environ Microbiol 56:2895–2901

    PubMed  CAS  Google Scholar 

  • Li F, Vadakoot J, Duan G, Shetty JK (2005) Grain composi-tions containing prebiotic isomalto-oligosaccharides and methods of making and using same. Genencor International Inc. EP1601699 A2. Accessed 7 Dec 2005

    Google Scholar 

  • Linko P, Hakulin S, Linko YY (1983) Extrusion cooking of barley starch for the production of glucose syrup and ethanol. J Cereal Sci 1:275–284

    CAS  Google Scholar 

  • Liu YH, Lu FP, Li Y et al (2008) Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600. Appl Microbiol Biotechnol 78:85–94

    PubMed  CAS  Google Scholar 

  • Mann JG, Liu YA (1999) Industrial water reuse and wastewater minimization. McGraw-Hill, New York

    Google Scholar 

  • Marrs B, Delagrave S, Murphy D (1999) Novel approaches for discovering industrial enzymes. Curr Opin Microbiol 2:241–245

    PubMed  CAS  Google Scholar 

  • Marshall RO, Kooi ER (1957) The enzymatic conversion of d-glucose to d-fructose. Science 125:648–649

    PubMed  CAS  Google Scholar 

  • Martin CH, Nielsen DR, Solomon KV et al (2009) Synthetic metabolism: engineering biology at the protein and pathway scales. Chem Biol 16:277–286

    PubMed  CAS  Google Scholar 

  • Maurer KH (2004) Detergent proteases. Curr Opin Biotechnol 15:330–334

    PubMed  CAS  Google Scholar 

  • McCleary BV, Gibson TS, Sheehan H et al (1989) Purification, properties, and industrial significance of transglucosidase from Aspergillus niger. Carbohydr Res 185:147–162

    CAS  Google Scholar 

  • Modilal MRD, Shenoi RR, Sebastian B et al (2011) Isolation, purification and characterization proteases from vegetable waste. Int J Pharm Life Sci 1:1–11

    Google Scholar 

  • Mojović L, Nikolić S, Rakin M et al (2006) Production of bioethanol from corn meal hydrolyzates. Fuel 85:1750–1755

    Google Scholar 

  • Montesinos T, Navarro JM (2000) Production of alcohol from raw wheat flour by Amyloglucosidase and Saccharomyces cerevisiae. Enzyme Microb Technol 27:362–370

    PubMed  CAS  Google Scholar 

  • Moore GRP, Luciana RC, Amante ER (2005) Cassava and corn starch in maltodextrin production. Quim Nova 28:596–600

    CAS  Google Scholar 

  • Muntean E, Muntean N, Paizs C et al (2010) Evaluation of effective parameters on enzymatic hydrolysis at low starch concentrations. Bull UASVM Agric:322–327. doi:10.1590/S0100-40422005000400008

  • Mussatto SI, Dragone G, Guimarães PMR et al (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    PubMed  CAS  Google Scholar 

  • Nakakuki T (1993) Oligosaccharides: production, properties and applications, vol 3, Japanese technology reviews. Gordon and Breach, Switzerland

    Google Scholar 

  • Neves MA, Kimura T, Shimizu N et al (2006) Production of alcohol by simultaneous saccharification and fermentation of low-grade wheat flour. Braz Arch Biol Technol 49:481–490

    Google Scholar 

  • Nikolić S, Mojović L, Rakin M et al (2010) Ultrasound-assisted production of bioethanol by simultaneous saccharification and fermentation of corn meal. Food Chem 122:216–222

    Google Scholar 

  • Oberoi R, Beg QK, Puri S et al (2001) Characterization and wash performance analysis of an SDS-stable alkaline protease from a Bacillus sp. World J Microbiol Biotechnol 17:493–497

    CAS  Google Scholar 

  • Oku T, Nakamura S (2003) Comparison of digestibility and breath hydrogen gas excretion of fructo-oligosaccharide, galactosyl-sucrose, and isomalto-oligosaccharide in healthy human subjects. Eur J Clin Nutr 57:1150–1156

    PubMed  CAS  Google Scholar 

  • Olempska-Beer ZS, Merker RI, Ditto MD et al (2006) Food-processing enzymes from recombinant microorganisms – a review. Regul Toxicol Pharm 45:144–158

    CAS  Google Scholar 

  • Ough CS, Crowell EA, Gutlove BR (1988) Carbamyl compound reactions with ethanol. Am J Enol Vitic 39:303–307

    CAS  Google Scholar 

  • Pan YC, Lee WC (2005) Production of high-purity isomalto-oligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells. Biotechnol Bioeng 89:797–804

    PubMed  CAS  Google Scholar 

  • Parker K, Salas M, Nwosu VC (2010) High fructose corn syrup: production, uses and public health concerns. Biotechnol Mol Biol Rev 5:71–78

    CAS  Google Scholar 

  • Pohit S, Biswas PK, Kumar R et al (2009) International experiences of ethanol as transport fuel: policy implications for India. Energy Policy 37:4540–4548

    Google Scholar 

  • Polaina J, MacCabe AP (2007) Industrial enzymes, structure, functions and applications. Springer, Dordrecht

    Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    PubMed  CAS  Google Scholar 

  • Qiang X, YongLie C, QianBing W (2009) Health benefit application of functional oligosaccharides. Carbohydr Polym 77:435–441

    Google Scholar 

  • Rahman MM, Rakshit KS (2003) Improved extractability of sweet potato starch using commercial hydrolytic enzymes. American society agricultural biological engineers publication paper no. 036070. ASAAE annual meeting, Michigan

    Google Scholar 

  • Ramírez EC, Johnston DB, McAloon AJ et al (2009) Enzymatic corn wet milling: engineering process and cost model. Biotechnol Biofuel 2:2. doi:10.1186/1754-6834-2-2

    Google Scholar 

  • Rhimi M, Messaud EB, Borgi MA et al (2007) Co-expression of L-arabinose isomerase and D-glucose isomerase in E. coli and development of an efficient process producing simultaneously D-tagatose and D-fructose. Enzyme Microb Technol 40:1531–1537

    CAS  Google Scholar 

  • Rong Y, Sillick M, Gregson CM (2009) Determination of dextrose equivalent value and number average molecular weight of maltodextrin by osmometry. J Food Sci 74:C33–C40

    PubMed  CAS  Google Scholar 

  • Rosendal P, Nielsen BH, Lange NK (1979) Stability of bacterial alpha-amylase in the starch liquefaction process. Starch-Stärke 31:368–372

    CAS  Google Scholar 

  • Roy I, Gupta MN (2004) Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzyme Microb Technol 34:26–32

    CAS  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005) Recent trends in microbial production, analysis, and applications of fructooligosaccharides. Trends Food Sci Technol 16:442–457

    CAS  Google Scholar 

  • Sayaslan A (2004) Wet-milling of wheat flour: industrial processes and small-scale test methods LWT. Food Sci Technol 37:499–515

    CAS  Google Scholar 

  • Setser CS, Racette WL (1992) Macromolecule replacers in food products. Crit Rev Food Sci Nutr 32:275–297

    PubMed  CAS  Google Scholar 

  • Seyhan S, Dilek TA (2008) Catalytic efficiency of immobilized glucose isomerase in isomerization of glucose to fructose. Food Chem 111:658–662

    Google Scholar 

  • Shanavas S, Padmaja G, Moorthy SN et al (2011) Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenerg 35:901–909

    CAS  Google Scholar 

  • Shapouri HJ, Duffield J, McAloon A et al (2004) The 2001 net energy balance of corn-ethanol. In: Tumbleson M (ed) Corn: feedstock of the future (Corn utilization and technology conference proceedings). Corn Utilization and Technology, Indianapolis

    Google Scholar 

  • Sharma V, Rausch KD, Tumbleson ME et al (2007) Comparison between granular starch hydrolyzing enzyme and conventional enzymes for ethanol production from maize starch with different amylase: amylopectin ratios. Starch-Stärke 59:549–556

    CAS  Google Scholar 

  • Shetty J, Chotani G, Duan G et al (2007) Cassava as an alternative feedstocks in the production of renewable transportation fuel. Int Sugar J 109:3–11

    Google Scholar 

  • Shetty J, Strohm BA, Singh V (2010) Phytase in enzymatic wet milling process. WO2010027846 A1. Accessed 11 May 2010

    Google Scholar 

  • Singh V, Johnston DB (2002) Pasting properties and surface characteristics of starch obtained from an enzymatic corn wet-milling process. Cereal Chem 79:523–527

    CAS  Google Scholar 

  • Singh V, Johnston D (2004) An enzymatic process for corn wet milling. Adv Food Nutr Res 48:151–171

    PubMed  CAS  Google Scholar 

  • Singh RS, Singh RP (2010) Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential. Food Technol Biotechnol 48:435–450

    CAS  Google Scholar 

  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM et al (2006) Alpha-amylase from microbial sources-an overview on recent developments. Food Technol Biotechnol 44:173–184

    CAS  Google Scholar 

  • Sriroth K, Chollakup R, Chotineeranat S et al (2000) Processing of cassava waste for improved biomass utilization. Bioresour Technol 71:63–69

    CAS  Google Scholar 

  • Steinke JD, Johnson LA (1991) Steeping maize in the presence of multiple enzymes. I. Static batch wise steeping. Cereal Chem 68:7–12

    CAS  Google Scholar 

  • Storz E, Steffens K (2004) Feasibility study for determination of the dextrose equivalent (DE) of starch hydrolysis products with near-infrared spectroscopy (NIRS). Starch-Stärke 56:58–62

    CAS  Google Scholar 

  • Strandberg GW, Smiley KL (1971) Free and immobilized glucose isomerase from Streptomyces phaechromogenes. Appl Microbiol 21:588–593

    PubMed  CAS  Google Scholar 

  • Sugden D (1997) Wheat starch and gluten manufacturing. World Grain 3:20–23

    Google Scholar 

  • Sugimoto K (1977) Denpunkagaku handbook. Asakura, Tokyo, pp 450–461

    Google Scholar 

  • Suresh K, Sree NK, Rao LV (1999) Utilization of damaged sorghum and rice grains for ethanol production by simultaneous saccharification and fermentation. Bioresour Technol 68:301–304

    CAS  Google Scholar 

  • Sutherland JD (2000) Evolutionary optimisation of enzymes. Curr Opin Chem Biol 4:263–269

    PubMed  CAS  Google Scholar 

  • Szulczyk KR, McCarl BA, Cornforth G (2010) Market penetration of ethanol. Renew Sustain Energy Rev 14:394–403

    CAS  Google Scholar 

  • Tester RF, Karkalas J, Qi X (2004) Starch structure and digestibility enzyme-substrate relationship. World’s Poult Sci J 60:186–195

    Google Scholar 

  • Tharanathan RN (2005) Starch – value addition by modification. Crit Rev Food Sci Nutr 45:371–384

    PubMed  CAS  Google Scholar 

  • Thomas KC, Ingledew WM (1990) Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl Microbiol Biotechnol 56:2046–2050

    CAS  Google Scholar 

  • Tuohy KM, Rouzaud GCM, Brück WM, Gibson GR (2005) Modulation of the human gut microflora towards improved health using prebiotics – assessment of efficacy. Curr Pharm Des 11:75–90

    PubMed  CAS  Google Scholar 

  • Underkofler LA, Danault LJ, Hou EF (1965) Enzymes in starch industry. Starch-Stärke 17:179–184

    CAS  Google Scholar 

  • Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    PubMed  Google Scholar 

  • van Dokkum W, Wezendonk B, Srikumar TS et al (1999) Effect of nondigestible oligosaccharides on large bowel functions, blood lipid concentrations & glucose absorption in young healthy male subjects. Eur J Clin Nutr 53:1–7

    PubMed  Google Scholar 

  • Vessia A (2007) Cassava: the food of the poor for future food security. Le Scienze Web News. http://www.lswn.it/en/nutrition/news/cassava_the_food_of_the_poor_for_future_food. Accessed 25 Jan 2010

  • Wang Y-J, Wang L (2000) Structure and properties of commercial maltodextrins from corn, potato, and rice starches. Starch-Stärke 52:296–304

    CAS  Google Scholar 

  • Warnecke F, Hess MA (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142:91–95

    PubMed  CAS  Google Scholar 

  • Weegels PL, Marseille JP, Hamer RJ (1992) Enzymes as a processing aid in the separation of wheat flour into starch and gluten. Starch-Stärke 44:44–48

    CAS  Google Scholar 

  • Wu X, Wang D, Bean SR, Wilson JP (2006) Ethanol production from pearl millet using Saccharomyces cerevisiae. American society agricultural biological engineer meeting: 057077

    Google Scholar 

  • Yan S, Wu X, MacRitchie F, Wang D (2009) Germination-improved ethanol fermentation performance of high-tannin sorghum in a laboratory dry-grind process. Cereal Chem 86:597–600

    CAS  Google Scholar 

  • Yeh W-K, Yang H-C, McCarthy JR (eds) (2010) Enzyme technologies: metagenomics, evolution, biocatalysis and biosynthesis. Wiley, Hoboken

    Google Scholar 

  • Zeleznak KJ, Hoseney RC (1986) The role of water in the retrogradation of wheat starch gels and bread crumb. Cereal Chem 63:407–411

    CAS  Google Scholar 

  • Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyl D (2006) Ethanol production from supercritical-fluid-extrusion cooked sorghum. Ind Crops Prod 23:304–310

    CAS  Google Scholar 

  • Zhou E, Xiaoliang P, Xiuzhi T (2009) Application study of xylo-oligosaccharide in layer production. Mod Appl Sci 3:103–107

    CAS  Google Scholar 

  • Zivkovic AM, Barile D (2011) Bovine milk as a source of functional oligosaccharides for improving human health. Adv Nutr 2:284–289

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipul Gohel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Gohel, V., Duan, G., Maisuria, V. (2013). Industrial Enzyme Applications in Biorefineries for Starchy Materials. In: Shukla, P., Pletschke, B. (eds) Advances in Enzyme Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1094-8_11

Download citation

Publish with us

Policies and ethics