Skip to main content

Bioremediation of Tannery and Textile Effluent by Plasmid Curing Heavy Metal Resistance Bacteria

  • Chapter
  • First Online:
Microbiological Research In Agroecosystem Management
  • 1153 Accesses

Abstract

The heavy metal resistant bacteria were isolated from tannery to textile effluents. The isolates were identified as Bacillus sp., Pseudomonas sp. and Staphylococcus sp. and the results showed that the isolated strains were able to grow a wide range of pH (5–10) at temperatures (28–45 °C). The isolates strains were tested for salt tolerance, heavy metals and antibiotics. Plasmid curing agents were used to cure the resistant plasmid if any. The growth of the isolates in the plates containing heavy metals showed that their heavy metal resistance was not plasmid mediated. On the other hand, the isolates which were resistant to several antibiotics became sensitive to some of them indicating antibiotic resistance to the plasmid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoukaty A, Appana VD (1990) Sensitivity of Pseudomonas syringae to various metals complexed to citrate. Microbios Lett 45:105–111

    Google Scholar 

  • Alonso J, Sanchez P, Martinez JL (2000) Stenotrophomonas maltophilia D457R contains a cluster of genes from Gram negative bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother 44:1778–1782

    Article  PubMed  CAS  Google Scholar 

  • Basu M, Bhattacharya S, Paul AK (1997) Isolation and characterization of chromium resistant bacteria from tannery effluent. Bull Environ Contam Toxicol 58:535–542

    Article  PubMed  CAS  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by standard single disc diffusion method. Am J Chil Pathol 45:493–496

    CAS  Google Scholar 

  • Baya AM, Brayton PR, Brown VL, Grimes DJ, Russek-Cohen E, Colwell RR (1986) Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Appl Environ Microbiol 51:1285–1292

    PubMed  CAS  Google Scholar 

  • Benschoter AS, Ingram LO (1986) Thermal tolerance of Zymomonas mobilis: induced changes in membrane composition. Appl Environ Microbiol 51:1278–1284

    PubMed  CAS  Google Scholar 

  • Bezverbnaya IP, Buzoleva LS, Khristoforova S (2005) Metal resistant heterotrophic bacteria in coastal waters of primorye. Russ J Mar Biol 31:73–77

    Article  Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM, Frenkenberger WT (2005) Diversity of chromium- resistant bacteria isolated from soils contaminated with dichromate. Applied Soil Ecol 29:193–202

    Article  Google Scholar 

  • Cervantes C, Silver S (1992) Plasmid chromate resistance and chromate reduction. Plasmid 27:65–71

    Article  PubMed  CAS  Google Scholar 

  • Chaloupka J (1985) Temperature as a factor regulating the synthesis of microbial enzymes. Microbiol Sci 2:86–90

    PubMed  CAS  Google Scholar 

  • Cheung KH, Gu JD (2003) Reduction of chromate by an enrichment consortium and an isolate of marine sulfate- reducing bacteria. Chemosphere 52:1523–1529

    Article  PubMed  CAS  Google Scholar 

  • Faisal M, Hasnain S (2000) Microbial conversion of Cr (VI) in to Cr (III) in industrial effluent. Afr J Biotechnol 3(11):610–617

    Google Scholar 

  • Faisal M, Hasnain S (2004) Microbial convertion of Cr(VI) into Cr(III) in industrial effluent. African J Biotech 3(11):610–617

    CAS  Google Scholar 

  • Francis AJ (1990) Microbial dissolution and stabilization of toxic metals and radionuclides in mixed wastes. Experientia 46:840–851

    Article  CAS  Google Scholar 

  • Hasnain H, Sabri AN (1992) Effect of temperature and pH on conjugal transfer of Zn resistant plasmids residing in gram negative bacteria isolated from industrial effluents. Environ Pollu 76:245–249

    Article  CAS  Google Scholar 

  • Kamalakannan S, Krishnamoorthy R, lee KJ, Purusothaman A, Shanthi K, Rao NR (2007) Aerobic chromate reducing Bacillus cereus isolated from the heavy metal contaminated ennore creek sediment North of Chennai Tamil Nadu South East India. Res J Microbiol 2:133–140

    Article  Google Scholar 

  • Kamalakannan S, lee KJ (2008) Metal tolerance and antibiotic resistance of Bacillus species isolated from sunchon bay sediments. South Korea Biotechnol 7(1):149–152

    Article  CAS  Google Scholar 

  • Khalil M, Adeep F, Hassan S, Iqbal J. (1991) Annual progress report of EPA research laboratories. Environmental protection agency Hous Phys Environ Plan Deptt Govt Punjab, Pakistan

    Google Scholar 

  • Khan SA, Khan FU (1998) Pollution and the tannery effluents. Sci Technol Devel 17:10–13

    Google Scholar 

  • Lawrence JG (2000) Clustering of antibiotic resistance genes: beyond the selfish operon. ASM News 66:281–286

    Google Scholar 

  • Losi ME, Frankenberger JWT (1994) Chromium resistant microorganisms isolated from evaporation ponds of a metal processing plant. Water Air Soil Pollut 74:405–413

    CAS  Google Scholar 

  • Luli GW, Joseph WL, William RS, Robert MP (1983) Hexavalent chromium resistant bacteria isolated from river sediments. Appl Environ Microbiol 46:846–854

    PubMed  CAS  Google Scholar 

  • Mahapatra NR, Ghosh S, Deb C, Banerjee PC (2002) Resistant to cadmium and zinc in Acidip-hilium symbioticum KM2 is plasmid mediated. Curr Mirobiol 45:180–186

    Article  CAS  Google Scholar 

  • Mclean JS, Beveridge TJ, Phipps D (2000) Isolation and characterization of Chromium reducing bacteria from a chromated copper arsenate contaminated site. Environ Microbiol 2:611–619

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Avudainayagam S, Neidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54

    Article  PubMed  CAS  Google Scholar 

  • Mir S, Hai MA (1999) Pollution due to hazardous waste water discharge by the local industry and its control. Sci Vis 4:1–7

    Google Scholar 

  • Miranda CD, Castillo G (1998) Resistance to antibiotic and heavy metals of motile aeromonads from Chilean freshwater. Sci Total Environ 224:167–176

    Article  PubMed  CAS  Google Scholar 

  • Nair S, Krishnamoorthi VS (1991) Effect of chromium on growth on Pseudomonas aeruginosa. Ind J Exp Biol 29:140–144

    CAS  Google Scholar 

  • Nies DH, Silver S (1989) Plasmid determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 171:896–900

    PubMed  CAS  Google Scholar 

  • Pal A, Paul AK (2004) Aerobic chromate reduction by chromium resistant bacteria isolated from serpentine soil. Microbiol Res 159:347–354

    Article  PubMed  CAS  Google Scholar 

  • Patterson D, Gillespie D (1972) Effcet of elevated temperatures on proteins synthesis in Escherichia Coli. J Bact 112:1177–1183

    PubMed  CAS  Google Scholar 

  • Schneider S, Schweisfurth R (1991) Species and genere of Enterobacteriaceae in river neckar and after river bank filteration an their resistance patterns to antibiotics and heavy metal salts. Wat Sci Tech 24:315–320

    Google Scholar 

  • Rashed MN, Soltan ME (2002) Removal of nutrients and heavy metals from urban wastewater using aeration, alum and kaolin ore. Proceedings of international symposium on environmental pollution control and waste management. 7–10 Jan 2002, Tunis (EPCOWM’2002), pp 621–627

    Google Scholar 

  • Strnadova M, Hecker M, Wolfel L, Mach H, Chaloupka J (1991) Temperature shifts and sporulation of Bacillus megaterium. J Gen Microbiol 137:787–795

    CAS  Google Scholar 

  • Sultan S, Hasnain S (2000) Hexavalent chromium resistant bacteria from effluents of electroplating: isolation, characterization and chromium (VI) reduction potential. Pak J Biol Sci 3(3):450–456

    Article  Google Scholar 

  • Sultan S, Hasnain S (2005) Plasmid mediated chromate resistance in bacteria isolated from industrial waste. Pak J Biol Sci 8(12):1771–1777

    Article  CAS  Google Scholar 

  • Tanaka T, Kuroda M, Sakaguchi K (1977) Isolation and characterization of four plasmid from Bacillus subtilis. J Bacteriol 129:1487–1494

    PubMed  CAS  Google Scholar 

  • Tippannavar CM, Venkataramana M, Reddy V, Rajashekara E (1989) Tolerance of Azotobacter chroococcum strains to different salt concentrations and pH levels. Farm Sys 5:24–28

    Google Scholar 

  • Verma T, Srinath T, Gadpayle RU, Ramteke PW, Hans RK, Garg SK (2001) Chromate tolerant bacteria isolated from tannery effluent. Bioresour Technol 78:31–35

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bharat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Bharat, S. (2013). Bioremediation of Tannery and Textile Effluent by Plasmid Curing Heavy Metal Resistance Bacteria. In: Velu, R. (eds) Microbiological Research In Agroecosystem Management. Springer, India. https://doi.org/10.1007/978-81-322-1087-0_7

Download citation

Publish with us

Policies and ethics