Advertisement

Optimum Design of Turbo-Alternator Using Modified NSGA-II Algorithm

  • K. V. R. B. Prasad
  • P. M. Singru
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 202)

Abstract

This paper presents a method to select the optimum design of turbo-alternator (TA) using modified elitist non-dominated sorting genetic algorithm (NSGA-II). In this paper, a real-life TA used in an industry is considered. The probability distribution of simulated binary crossover (SBX-A) operator, used in NSGA-II algorithm, is modified with different probability distributions. The NSGA-II algorithm with lognormal probability distribution (SBX-LN) performed well for the TA design. It found more number of optimal solutions with better diversity for the real-life TA design.

Keywords

Convergence Design optimization Diversity Genetic algorithm Turbo-alternator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gray, A.: Electrical Machine Design – The Design and Specification of Direct and Alternating Current Machinery. Mcgrawhill Book Company, Inc. (1913).Google Scholar
  2. Sawheny, A.K.: Electrical Machine Design. Dhanpat Rai & Sons, Newdelhi (1991).Google Scholar
  3. Lamme, B.G.: High speed turbo-alternator-designs and limitations. Proceedings of the IEEE. 72, 494-526 (1984).Google Scholar
  4. Ula, A.H.M.S., Stephenson, J.M., Lawrenson, P.J.: The effect of design parameters on the dynamic behavior of the superconducting alternators. IEEE Trans. Energy Conversion. 3, 179-186 (1988).Google Scholar
  5. Azzouri, J., Karim, N.A., Barkat, G., Dakyo, B.: Axial flux permanent magnet synchronous generator design optimization: Robustness test of the genetic algorithm approach. ESPE 2005, Dresden. P1-P10 (2005).Google Scholar
  6. Deb, K.: Optimization for Engineering Design. Prentice-hall of India Private limites, Newdelhi (1998).Google Scholar
  7. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John wiley & sons limited, Chichester (2002).Google Scholar
  8. Deb, K., Agarwal, S., Pratap, A., Meyariven, T.A.: A fast and elitist mutli-objective genetic algorithm: NSGA-II. IEEE Trans. Evolutioanary Computation. 6, 182-197 (2002).Google Scholar
  9. Deb, K.: Multi-objective genetic algorithms: Problems difficulties and construction of test functions. Evolutionary Computation. 7, 205-230 (1999).Google Scholar
  10. Deb, K., Pratap, A., Moitra, S: Mechanical component design for multiple objectives using elitist non-dominated sorting GA. Kangal Technical Report no. 200002, Indian Institute of Technology Kanur, Kanpur, India (2000).Google Scholar
  11. Raghuwanshi, M.M., Singru, P.M., Kale, U., Kakde, O.G.: Simulated binary crossover with lognormal distribution. Complexity International. 12, 1-10 (2008).Google Scholar
  12. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Verlag Berlin Heidelberg (2005).Google Scholar
  13. Prasad, K.V.R.B., Singru, P.M.: Performance of lognormal probability distribution in crossover operator of NSGA-II algorithm. SEAL 2010, Kanpur. 514-522 (2010).Google Scholar
  14. Prasad, K.V.R.B., Singru, P.M.: Identifying the optimum design of turbo-alternator using different multi-objective optimization algorityhms. ITC 2010, Kochi. 150-158 (2010).Google Scholar
  15. Central Electricity Board: Indian Electricity Rules, 1956 (as amended up to 25th Nov., 2000). Under section 37 of the Indian Electricity Act. 1910 (9 of 1910). Ministry of power, Government of India. http://www.powermin.nic.in/acts_notification/pdf/ier1956.pdf (2000).

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.MITSMadanapalleIndia
  2. 2.BITSRajasthanIndia

Personalised recommendations