Optimum Design of Turbo-Alternator Using Modified NSGA-II Algorithm

  • K. V. R. B. Prasad
  • P. M. Singru
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 202)


This paper presents a method to select the optimum design of turbo-alternator (TA) using modified elitist non-dominated sorting genetic algorithm (NSGA-II). In this paper, a real-life TA used in an industry is considered. The probability distribution of simulated binary crossover (SBX-A) operator, used in NSGA-II algorithm, is modified with different probability distributions. The NSGA-II algorithm with lognormal probability distribution (SBX-LN) performed well for the TA design. It found more number of optimal solutions with better diversity for the real-life TA design.


Convergence Design optimization Diversity Genetic algorithm Turbo-alternator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Gray, A.: Electrical Machine Design – The Design and Specification of Direct and Alternating Current Machinery. Mcgrawhill Book Company, Inc. (1913).Google Scholar
  2. Sawheny, A.K.: Electrical Machine Design. Dhanpat Rai & Sons, Newdelhi (1991).Google Scholar
  3. Lamme, B.G.: High speed turbo-alternator-designs and limitations. Proceedings of the IEEE. 72, 494-526 (1984).Google Scholar
  4. Ula, A.H.M.S., Stephenson, J.M., Lawrenson, P.J.: The effect of design parameters on the dynamic behavior of the superconducting alternators. IEEE Trans. Energy Conversion. 3, 179-186 (1988).Google Scholar
  5. Azzouri, J., Karim, N.A., Barkat, G., Dakyo, B.: Axial flux permanent magnet synchronous generator design optimization: Robustness test of the genetic algorithm approach. ESPE 2005, Dresden. P1-P10 (2005).Google Scholar
  6. Deb, K.: Optimization for Engineering Design. Prentice-hall of India Private limites, Newdelhi (1998).Google Scholar
  7. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John wiley & sons limited, Chichester (2002).Google Scholar
  8. Deb, K., Agarwal, S., Pratap, A., Meyariven, T.A.: A fast and elitist mutli-objective genetic algorithm: NSGA-II. IEEE Trans. Evolutioanary Computation. 6, 182-197 (2002).Google Scholar
  9. Deb, K.: Multi-objective genetic algorithms: Problems difficulties and construction of test functions. Evolutionary Computation. 7, 205-230 (1999).Google Scholar
  10. Deb, K., Pratap, A., Moitra, S: Mechanical component design for multiple objectives using elitist non-dominated sorting GA. Kangal Technical Report no. 200002, Indian Institute of Technology Kanur, Kanpur, India (2000).Google Scholar
  11. Raghuwanshi, M.M., Singru, P.M., Kale, U., Kakde, O.G.: Simulated binary crossover with lognormal distribution. Complexity International. 12, 1-10 (2008).Google Scholar
  12. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Verlag Berlin Heidelberg (2005).Google Scholar
  13. Prasad, K.V.R.B., Singru, P.M.: Performance of lognormal probability distribution in crossover operator of NSGA-II algorithm. SEAL 2010, Kanpur. 514-522 (2010).Google Scholar
  14. Prasad, K.V.R.B., Singru, P.M.: Identifying the optimum design of turbo-alternator using different multi-objective optimization algorityhms. ITC 2010, Kochi. 150-158 (2010).Google Scholar
  15. Central Electricity Board: Indian Electricity Rules, 1956 (as amended up to 25th Nov., 2000). Under section 37 of the Indian Electricity Act. 1910 (9 of 1910). Ministry of power, Government of India. (2000).

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.MITSMadanapalleIndia
  2. 2.BITSRajasthanIndia

Personalised recommendations