Orientational Selectivity is Retained in Zero-Crossings Obtained Via Stochastic Resonance

  • Ajanta Kundu
  • Sandip Sarkar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 202)


Computational theory of visual information processing suggest that the initial stages information processing consists of in part representation of zero crossing in the visual scene filtered through a suitable second order differential operator (centre-surround receptive field). These zero crossings often correspond to sharp intensity changes in the visual scene and are rich in information. We report here our investigation, through simulation study, on the role of zero crossings in orientational selectivity measurement. We show that the perceptive contrast sensitivity of zero-crossing of sub-threshold noise contaminated grating image exhibit stochastic resonance. We also show that the contrast sensitivity of test grating, in the presence of a masking grating, decreases with the increase of masking contrast. The qualitative nature of the contrast sensitivity variations are in agreement with the results of various phychophysical experiments.


Zero-crossing Contrast sensitivity Stochastic resonance Receptive field LoG 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Douglass, J. K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance, Nature, 365,337-340 (1993).Google Scholar
  2. Levin, J. E., Miller, J. P.: Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance, Nature, 380, 165-168 (1996).Google Scholar
  3. Chiou-Tan, F.Y., Magee, K.N., Robinson, L.R., Nelson, M.R., Tuel, S.S., Krouskop, T.A., Moss, F.: Enhancement of Subthreshold Sensory Nerve Action Potentials During Muscle Tension Mediated Noise. Intern. J. Bifurc. Chaos, 7, 1389. (1996).Google Scholar
  4. Collins, J. J., Imhoff, T. T., Grigg, P.: Noise-enhanced tactile sensation. Nature, 383, 770. (1996).Google Scholar
  5. Kitajo, K., Nozaki, D., Ward, L.M., Yamamoto, Y.: Behavioral Stochastic Resonance within the Human Brain. Phys.Rev. Lett. 90, 218103 (2003).Google Scholar
  6. Mori, T., Kai, S.: Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves, Phys. Rev. Lett. 88, 218101 (2002).Google Scholar
  7. Simonotto, E., Riani, M., Seife, C., Roberts, M., Twitty, J., Moss, F.: Visual Perception of Stochastic Resonance. Phys. Rev. Lett. 78, 1186-1189 (1997).Google Scholar
  8. Goris, R. L. T., Zaenen, P., Wagemans, J.: Some observations on contrast detection in noise. Journal of Vision 8(9):4, 1-15 (2008).Google Scholar
  9. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W H Freeman and Company, New York (1982).Google Scholar
  10. Marr, D., Hildreth, E.: Theory of Edge Detection. Proc. R. Soc. Lond. Series B, Biological Sciences. 207. 187-217 (1980).Google Scholar
  11. Marr, D., Ullman, S., Poggio, T.: Bandpass channels, Zero crossings, and early visual Information processing. J. Opt. Soc. Am., 69(6), 914-916 (1979).Google Scholar
  12. Marr, D., Ullman, S.: Directional selectivity and its use in early visual processing. Proc. Soc. Lond. B 211, 151-180 (1981).Google Scholar
  13. Licklider, J. C. R., Pollack, I.: Effects of differentiation, integration and infinite peak clipping upon the intelligibility of speech. J. Acoust. Soc. Amer., 20, 42-51 (1948).Google Scholar
  14. Curtis, S. R., Oppenheim, A. V., Lim, J. S.: Reconstruction of two-dimensional signals from threshold crossings. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ‘85, 10, 1057 – 1060 (1985).Google Scholar
  15. Campbell, F. W. and Kulikowski, J. J. : Orientational selectivity of the human visual system. J. Physiol. (1966), 187, 437-445 (1966).Google Scholar
  16. Marr, D., Poggio, T., Ullman, S. J.: Opt. Soc. Am. 70: 868-70 (1979).Google Scholar
  17. Ullman, S.: Artificial Intelligence and The Brain: Computational Studies of the Visual System. Ann. Rev. Neuroscience, 9, 1-26 (1986).Google Scholar
  18. Sarkar, S., Ghosh, K., Bhaumik, K.: Proceedings of the 3rd Indian International Conference on Artificial Intelligence, Pune, India, December (2007), ISBN 978-0-9727412-2-4.Google Scholar
  19. Mach, E. (1868). On the physiological effects of spatially distributed light stimuli. Translated in F Ratliff, “Mach Bands: Quantitative Studies on Neural Networks in the Retina,” Holden-Day, Sanfrancisco, 299-306, (1965).Google Scholar
  20. Mead, C.: Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1639-1636 (1990).Google Scholar
  21. Koenderink, J. J. : The Structure of Images. Biological Cybernetics, 50, 363–370 (1984).Google Scholar
  22. Lindeberg, T. : Scale-Space Theory: A Basic Tool for Analyzing Structures at Different Scales. Journal of Applied Statistics 21 (2), 224–270 (1994).Google Scholar
  23. Yuille, A. L., and Poggio, T.A.: Scaling Theorems for Zero Crossings. IEEE Trans. Pattern Analysis & Machine Intelligence, PAMI-8(1), 15–25 (1986).Google Scholar
  24. Young, R. A.: The Gaussian derivative model for spatial vision: I. Retinal mechanisms. Spatial Vision2 (4), 273–293 (1987).Google Scholar
  25. Young, R. A., Lesperance, R. M., and Meyer, W. W.: The Gaussian Derivative model for spatial-temporal vision: I. Cortical model. Spatial Vision 14 (3-4), 261–319 (2001).Google Scholar
  26. Gingl, Z., Kiss, L. B., Moss, F.: Non-Dynamical Stochastic Resonance: Theory and Experiments with White and Arbitrarily Colored Noise. Europhys.Lett.29 (3), 191-196 (1995).Google Scholar
  27. Gingl, Z., Kiss, L., Moss, F.: Nuovo Cimento D, 17, 795 (1995).Google Scholar
  28. Campbell, F. W., Robson, J. G.: Application of Fourier analysis to the visibility of grating, J. Physiol. 197, 551-566 (1968).Google Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Applied Nuclear Physics DivisionSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations