Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 201))

Abstract

In today’s world DNA technology is promoted as an alternative approach for advancement over silicon technology. The DNA technology is also used to detect diseases. It needs some molecular computation for which the development of basic circuit unit is required. Basic circuit comprises the AND, OR and NOT gate. In this paper we proposed the design of two-input OR gate with E6 deoxyribozyme whose internal loop is not fixed. OR logic helps to express Boolean expression in Sum of Product (SOP) form and sometimes it uses to minimize the Boolean function. The DNA technology can be used as a substitute method not only for lower time complexity and low power consumption but also this technology is reversible in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Yaakov Benenson, Tamar Paz-Elizur, Rivka Adar, Ehud Keinan, Zvi Livneh and Ehud Shapiro.: Programmable and autonomous computing machine made of biomolecules. Nature. 414, 430–434 (2001).

    Google Scholar 

  • Yaakov Benenson, Rivka Adar, Tamar Paz-Elizur, Zvi Livneh, and Ehud Shapiro.: DNA molecule provides a computing machine with both data and fuel. Proc. National Acad. Sci. USA. 100 (5), 2191–2196 (2003).

    Google Scholar 

  • Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T. and Hagiya, M.: Molecular computation by DNA hairpin formation Science. 288, 1223–1226 (2000).

    Google Scholar 

  • Yaakov Benenson, Binyamin Gil, Uri Ben-Dor, Rivka Adar and Ehud Shapiro.: An autonomous molecular computer for logical control of gene expression. Nature. 429, 423–429 (2004).

    Google Scholar 

  • Yin, P., Choi, H. M. T., Calvert, C. R. and Pierce, N. A.: Programming biomolecular self-assembly pathways. Nature. 451, 318–322 (2008).

    Google Scholar 

  • Bernard Yurke, Andrew J. Turberfield, Allen P. Mills Jr, Friedrich C. Simmel and Jennifer L. Neumann.: A DNA-fuelled molecular machine made of DNA. Nature. 406, 605–608 (2000).

    Google Scholar 

  • Venkataraman S., Dirks R. M., Rothemund P. W. K., Winfree E. and Pierce N. A.: An autonomous polymerization motor powered by DNA hybridization. Nature Nano technology. 2, 490–494 (2007).

    Google Scholar 

  • Seelig, G., Soloveichik, D., Zhang, D. Y. and Winfree E.: Enzyme-free nucleic acid logic circuits. Science. 314, 1585–1588 (2006).

    Google Scholar 

  • Zhang, D. Y., Turberfield, A. J., Yurke, B. and Winfree E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science. 318, 1121–1125 (2007).

    Google Scholar 

  • Kari, L., Paun, G., Rozenberg, G., Salomaa, A. and Yu, S.: DNA computing, sticker systems, and universality, Acta Informatica. 35, 401–420 (1998).

    Google Scholar 

  • Paun, G. and Rozenberg, G.: Sticker systems. Theoritical Computer Science. 204, 183–203 (1998).

    Google Scholar 

  • Leonard M. Adleman.: Molecular computation of solutions to combinatorial problem. Science, New Series. 266 (5187), 1021–1024 (1994).

    Google Scholar 

  • Kunal Das and Debashis De: A study on Diverse Nanostructure for implementing Logic Gate design for QCA. Int. Journal of Nanoscience. 10 (01n02), 1–7 (2011).

    Google Scholar 

  • Kunal Das and Debashis De: Novel Approach to design A Testable Conservative Logic Gate for QCA Implementation. Proc. IEEE 2nd International Advance Computing Conference. 82–87 (2010).

    Google Scholar 

  • Kunal Das and Debashis De: A Novel Approach of And-Or-Invert (AOI) Gate design for QCA. Proc. Int. Conference on Computers and Devices for Communication. (2009).

    Google Scholar 

  • Stojanovic, M. N. and Stefanovic, D.: Deoxyribozyme-Based Half-Adder. Journal of American Chemical Society. 125, 6673–6676 (2003).

    Google Scholar 

  • Watson, J. D. and Crick, F. H. C.: The Structure of DNA. Cold Spring Harbor Symposia Quantitative Biology. 123–131 (1953).

    Google Scholar 

  • Breaker, R. R. and Joyce, G. F.: A DNA enzyme with Mg2 + -dependent RNA phosphoesterase activity. Chemistry & Biology. 2, 655–660 (1995).

    Google Scholar 

  • Jing Li, Wenchao Zheng, Angela H. Kwon, and Yi Lu.: In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 28 (2), 481–488 (2000).

    Google Scholar 

  • Santoro Stephen W. and Joyce, Gerald F.: A general purpose RNA-cleaving DNA enzyme. Proc. National Acad. Sci. USA. 94 (9), 4262–4266 (1997).

    Google Scholar 

  • Stojanovic M. N., Mitchell T. E. and Stefanovic, D.: Deoxyribozyme-Based Logic Gates. Journal of American Chemical Society. 124, 3555–3561 (2002).

    Google Scholar 

  • Okamoto A., Tanaka K. and Saito, I.: DNA Logic Gates. Journal of American Chemical Society. 126, 9458–9463 (2004).

    Google Scholar 

  • Natalia S. Akopyants, Robin S. Matlib, Elena N. Bukanova, Matthew R. Smeds, Bernard H. Brownstein, Gary D. Stormo, Stephen M. Beverley.: Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Molecular & Biochemical Parasitology Elsevier. 136, 71–86 (2004).

    Google Scholar 

  • Tim Head.: Formal Language Theory and DNA: An analysis of the generative capacity of specific recombinant behaviors. Bulletin of Mathematical Biology. 49 (6), 737–759 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this paper

Cite this paper

Roy, P., Dey, D., Sinha, S., De, D. (2013). Reversible OR Logic Gate Design Using DNA. In: Bansal, J., Singh, P., Deep, K., Pant, M., Nagar, A. (eds) Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). Advances in Intelligent Systems and Computing, vol 201. Springer, India. https://doi.org/10.1007/978-81-322-1038-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1038-2_30

  • Published:

  • Publisher Name: Springer, India

  • Print ISBN: 978-81-322-1037-5

  • Online ISBN: 978-81-322-1038-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics