Skip to main content

Application of High Quality Amino Acid Indices to AMS 3.0: A Update Note

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 201)

Abstract

In this article, we are showing the application of high quality indices of amino acids to improve the performance of AutoMotif Server (AMS) for prediction of phosphorylation sites in proteins. The latest version of AMS 3.0 is developed using artificial neural network (ANN) method. The query protein sequence is dissected into overlapping short sequence segments and then represented it by ten different amino acid indices, which are various physicochemical and biochemical properties of amino acids. However, the selection of amino acid indices has done based on literature survey. Hence, this fact motivated us to use the recently proposed high quality amino acid indices for AMS 3.0. High quality amino acid indices have been developed after analyzing the AAindex database using fuzzy clustering methods. The significant differences in the performance are observed by boosting the precision and recall values of four major protein kinase families like CDK, CK2, PKA and PKC in comparison with the currently available state-of-the-art methods.

Keywords

  • AutoMotif server
  • Artificial neural network
  • Amino acid
  • High quality indices
  • Machine learning
  • Phosphorylation
  • Swiss-prot database.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-81-322-1038-2_19
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-81-322-1038-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Pawson, T.: Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116 (2004) 191–203.

    Google Scholar 

  • Basu, S., Plewczynski, D.: AMS 3.0: prediction of post-translational modifications. BMC Bioinformatics 11:210 (2010).

    Google Scholar 

  • Nakai, K., Kidera, A., Kanehisa, M.: Cluster analysis of amino acid indices for prediction of protein structure and function. Protein Engineering 2 (1988) 93–100.

    Google Scholar 

  • Tomii, K., Kanehisa, M.: Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Engineering 9 (1996) 27–36.

    Google Scholar 

  • Kawashima, S., Ogata, H., Kanehisa, M.: AAindex: amino acid index database. Nucleic Acids Research 27 (1999) 368–369.

    Google Scholar 

  • Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., Kanehisa, M.: AAindex: amino acid index database, progress report 2008. Nucleic Acids Research 36 (2008) D202–D205.

    Google Scholar 

  • Kawashima, S., Kanehisa, M.: AAindex: amino acid index database. Nucleic Acids Research 28 (2000) 374.

    Google Scholar 

  • Saha, I., Maulik, U., Bandyopadhyay, S., Plewczynski, D.: Fuzzy clustering of physicochemical and biochemical properties of amino acids. Amino Acids ( DOI 10.1007/s00726-011-1106-9) (2011).

    Google Scholar 

  • Maulik, U., Saha, I.: Automatic fuzzy clustering using modified differential evolution for image classification. IEEE Transactions on Geoscience and Remote Sensing 48(9), 2010, pp. 3503–3510.

    Google Scholar 

  • Bandyopadhyay, S., Pal, S.K.: Pixel classification using variable string genetic algorithms with chromosome differentiation. IEEE Transactions on Geoscience and Remote Sensing 39(2) (2001) 303–308.

    Google Scholar 

  • Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Transactions on Geoscience and Remote Sensing 41(5) (2003) 1075–1081.

    Google Scholar 

  • Krishnapuram, R., Joshi, A., Yi, L.: A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering. in Proceedings of IEEE International Conference Fuzzy Systems - FUZZ-IEEE 99 (1999) 1281–1286.

    Google Scholar 

  • Maulik, U., Bandyopadhyay, S., Saha, I.: Integrating clustering and supervised learning for categorical data analysis. IEEE Transactions on Systems, Man and Cybernetics Part-A 40(4) (2010) 664–675.

    Google Scholar 

  • Maulik, U., Saha, I.: Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery. Pattern Recognition 42(9) (2009) 2135–2149.

    Google Scholar 

  • Maulik, U., Bandyopadhyay, S.: Genetic algorithm based clustering technique. Pattern Recognition 33 (2000) 1455–1465.

    Google Scholar 

  • Plewczynski, D., Tkacz, A., Wyrwicz, L.S., Rychlewski, L.: AutoMotif Server: prediction of single residue post-translational modifications in proteins. Bioinformatics Applications Note 21(10) (2005) 2525–2527.

    Google Scholar 

  • Plewczynski, D., Tkacz, A., Wyrwicz, L.S., Rychlewski, L.: AutoMotif Server for prediction of phosphorylation sites in proteins using support vector machine: 2007 update. Journal of Molecular Modeling 14 (2008) 69–76.

    Google Scholar 

  • Xue, Y., Zhou, F., Zhu, M., Ahmed, K., Chen, G., Yao, X.: GPS: a comprehensive www server for phosphorylation sites prediction. Nucleic acids research (2005) W184–187.

    Google Scholar 

  • Hjerrild, M., Stensballe, A., Rasmussen, T.E., Kofoed, C.B., Blom, N., Sicheritz-Ponten, T., Larsen, M.R., Brunak, S., Jensen, O.N., Gammeltoft, S.: Identification of phosphorylation sites in protein kinase a substrates using artificial neural networks and mass spectrometry. Journal of Proteome Research 3 (2004) 426–433.

    Google Scholar 

  • Wong, Y.H., Lee, T.Y., Liang, H.K., Huang, C.M., Wang, T.Y., Yang, Y.H., Chu, C.H., Huang, H.D., Ko, M.T., Hwang, J.K.: KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic acids research (2007) W588–W594.

    Google Scholar 

  • Xue, Y., Li, A., Wang, L., Feng, H., Yao, X.: PPSP: prediction of PK-specific phosphorylation site with bayesian decision theory. BMC Bioinformatics 7:163 (2006).

    Google Scholar 

  • Yaffe, M.B., Leparc, G.G., Lai, J., Obata, T., Volinia, S., Cantley, L.C.: A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nature Biotechnology 19(4) (2001) 348–353.

    Google Scholar 

  • Kim, J.H., Lee, J., Oh, B., Kimm, K., Koh, I.: Prediction of phosphorylation sites using SVMs. Bioinformatics 20(17) (2004) 3179–3184.

    Google Scholar 

  • Wan, J., Kang, S., Tang, C., Yan, J., Ren, Y., Liu, J., Gao, X., Banerjee, A., Ellis, L.B., Li, T.: Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection. Nucleic acids research 36(4) (2008) e22.

    Google Scholar 

  • Huanga, W.L., Tung, C.W., Huangc, H.L., Hwang, S.F., Hob, S.Y.: ProLoc: Prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features. BioSystems 90 (2007) 573–581.

    Google Scholar 

  • Tantoso, E., Li, K.B.: AAIndexLoc: predicting subcellular localization of proteins based on a new representation of sequences using amino acid indices. Amino Acids 35(2) (2008) 345–353.

    Google Scholar 

  • Liao, B., Liao, B., Sun, X., Zeng, Q.: A novel method for similarity analysis and protein subcellular localization prediction. Bioinformatics 26(21) (2010) 2678–2683.

    Google Scholar 

  • Laurila, K., Vihinen, M.: PROlocalizer: integrated web service for protein subcellular localization prediction. Amino Acids (2010, PMID: 20811800.).

    Google Scholar 

  • Tung, W.C., Ho, Y.S.: POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Bioinformatics 23 (2007) 942–949.

    Google Scholar 

  • Tian, F., Yang, L., Lv, F., Yang, Q., Zhou, P.: In silico quantitative prediction of peptides binding affinity to human MHC molecule: an intuitive quantitative structure-activity relationship approach. Amino Acids 36(3) (2009) 535–554.

    Google Scholar 

  • Lu, L., Shi, X.H., Li, S.J., Xie, Z.Q., Feng, Y.L., Lu, W.C., Li, Y.X., Li, H., Cai, Y.D.: Protein sumoylation sites prediction based on two-stage feature selection. Molecular Diversity 14 (2010) 81–86.

    Google Scholar 

  • Klingström, T., Plewczynski, D.: Protein-protein interaction and pathway databases, a graphical review. Briefings in Bioinformatics 12 (2010) 702–713.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer India

About this paper

Cite this paper

Saha, I., Maulik, U., Plewczynski, D. (2013). Application of High Quality Amino Acid Indices to AMS 3.0: A Update Note. In: Bansal, J., Singh, P., Deep, K., Pant, M., Nagar, A. (eds) Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). Advances in Intelligent Systems and Computing, vol 201. Springer, India. https://doi.org/10.1007/978-81-322-1038-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1038-2_19

  • Published:

  • Publisher Name: Springer, India

  • Print ISBN: 978-81-322-1037-5

  • Online ISBN: 978-81-322-1038-2

  • eBook Packages: EngineeringEngineering (R0)