R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. pages 206–216. In ACM SIGMOD International Conference on Management of Data, 1993.
Google Scholar
S. Brin, R.Motwani, J.D.Ullman, and S.Tsur. Dynamic itemset counting and implication rules for market basket data. volume 26, pages 255–268. in Proc. of the 1997 ACM SIGMOD Int’n Conf. on Management of data, 1997.
Google Scholar
C.A.C Coello. A comprehensive survey of evolutionary-based multi-objective optimization technique. pages 269–308. Knowledge and information systems, 1999.
Google Scholar
J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation:a frequent-pattern tree approach. volume 8, pages 53–87. Data Mining and Knowledge Discovery, 2004.
Google Scholar
N. Hoque, B. Nath, and D. K. Bhattacharyya. A new approach on rare association rule mining. volume 53. International Journal of Computer Applications (0975–8887), 2012.
Google Scholar
R. U. Kiran and P. K. Reddy. Mining rare association rules in the datasets with widely varying items’ frequencies. The 15th International Conference on Database Systems for Advanced Applications Tsukuba, Japan, April 1–4, 2010.
Google Scholar
Y. S. Koh and N. Rountree. Finding sporadic rules using apriori-inverse. pages 97–106. Springer-Verlag Berlin Heidelberg, 2005.
Google Scholar
D. I. Lin and Z. M. Kedem. Pincer-search: an efficient algorithm for discovering the maximal frequent set. pages 105–219. In Proc. Of 6th European Conference on Extending DB Tech, 1998.
Google Scholar
B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum supports. pages 337–341. ACM Special Interest Group on Knowledge Discovery and Data Mining Explorations, 1999.
Google Scholar
H. Mannila. Methods and problems in data mining. pages 41–55, 1997.
Google Scholar
B. Nath and A. Ghosh. Multi-objective rule mining using genetic algorithm. pages 123–133. Information Science 163, 2004.
Google Scholar
R.Srikant and R. Agrawala. Mining generalized association rules. pages 407–419. Proceedings of the 21st VLDB Conference Zurich, Swizerland, 1995.
Google Scholar
A. Savesere, E. Omiecinski, and S. Navathe. An effective algorithm for mining asociation rules in large database. pages 432–443. In proceedings of International Conference on VLDB95, 1995.
Google Scholar
L. Szathmary and P. Valtchev. Towards rare itemset mining. Soutenue publiquement le.
Google Scholar
L. Szathmary, P. Valtchev, and A. Napoli. Generating rare association rules using the minimal rare itemsets family. volume 4, pages 219–238. International Journal on Software Informatics, 2010.
Google Scholar
H. Yun, D. Ha, B. Hwang, and K. H. Ryu. Mining association rules on significant rare data using relative support. volume 67, pp. 181–191. The, Journal of Systems and Software, 2003.
Google Scholar
E. Zitzler, K. Dev, and L. Thiele. Comparision of multi-objective evolutionary algorithms: empirical results. pages 125–148. Evolutionary Computation 8, 2000.
Google Scholar