Skip to main content

Cholera and Drinking Water

  • Chapter
  • First Online:
Water and Health
  • 1612 Accesses

Abstract

Cholera is caused by intestinal infection of Vibrio cholerae O1 or O139 through oral route by ingestion of contaminated food and water. Symptoms of cholera include acute watery diarrhea, vomiting, cramps and dehydration. If not treated in time, patient can die of dehydration and hypovolemic shock. Effective therapy is rehydration replacement of salts and electrolytes orally and/or intravenously. Once diarrhea has commenced antibiotic administration only help reduce the bacterial burden and duration of illness. Pathogenesis of cholera is characterized by entry of vibrios in small intestine, adherence to epithelial surface, colonization and release of enterotoxin followed by secretion of isotonic fluid. Mucinase, motility, adherence, multiplication, colonization and secretion of one or more types of toxin are among important factors contributing to disease process. Lipopolysaccharide and flagellar antigens, cholera lectins, haemagglutinins and major outer membrane proteins have been identified as mediating adherence and colonization. Immune response after infection is exclusively humoral. Antibodies to cholera antigens have been detected in sera of experimental cholera and convalescent patients. Antibacterial and antitoxin immunities are synergistic and contribute in protection. A vaccine providing durable immunity has remained elusive despite tremendous efforts. However, judicious application of knowledge of mucosal immunity, pathogenesis, antigen formulations and vaccine delivery will yield the right cholera vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert MJ, Siddique AK, lslam MS, Faruque AS, Ansaruzzaman M, Faruque SM et al (1993) Large outbreak of clinical cholera due to Vibrio cholerae non-Ol in Bangladesh. Lancet 341:704

    CAS  Google Scholar 

  • Attridge SR, Rowley D (1983) The role of flagellum in adherence of Vibrio cholerae. J Infect Dis 147:864–872

    CAS  Google Scholar 

  • Bartowsky EJ, Attridge SR, Thomas CJ, Mayrhofer G, Manning PA (1990) Role of the P plasmid in attenuation of Vibrio cholerae O1. Infect Immun 58:3129

    CAS  Google Scholar 

  • Barua D, Burrows W (eds) (1974) Cholera WB Saunders Co. Philadelphia, USA

    Google Scholar 

  • Baudry B, Fasano A, Ketley J, Kaper JB (1992) Cloning of a gene encoding a new toxin produced by Vibrio cholerae: zot. Infect Immun 60:428–434

    CAS  Google Scholar 

  • Benitez JA, Garcia L, Silva A, Garcia H, Fando R, Cedre B et al. (1999) Preliminary assessment of the safety and immunogenicity of a new CTXPhi-negative, hemagglutinin/protease-defective El Tor strain as a cholera vaccine candidate. lnfect lmmun 67:539–545

    Google Scholar 

  • Bhaskaran K, Sinha VB (1967) Attenuation of virulence in Vibrio cholerae. J Hyg (camb) 65:135–148

    CAS  Google Scholar 

  • Bhattacharjee JW, Srivastava BS (1978) Mannose-sensitive haemagglutinins in adherence of Vibrio cholerae eltor to intestine. J Gen Microbiol 107:407–410

    CAS  Google Scholar 

  • Bhattacharjee JW, Srivastava BS (1979) Adherence of the wild-type and mutant strains of Vibrio cholerae to normal and immune intestinal tissue. Bull WHO 57:123–128

    CAS  Google Scholar 

  • Bhattacharya SK, Goswami C, Bhattacharya MK, Dutta D, Deb A, Deb M et al. (1994) Epidemic of Vibrio cholerae O139 in Calcutta. lndian J Med Res 100:213–216

    Google Scholar 

  • Boutonnier A, Villeneuve S, Nato F, Dassy B, Fournier JM (2001) Preparation, immunogenicity, and protective efficacy, in a murine model, of a conjugate vaccine composed of the polysaccharide moiety of the lipopolysaccharide of Vibrio cholerae O139 bound to tetanus toxoid. lnfect lmmun 69:3488–3493

    Google Scholar 

  • Burnet FM (1948) The mucinase of Vibrio cholerae. Aust J Exp Biol Med 27:245–252

    Google Scholar 

  • Cash RA, Music SI, Libonati JP, Schwartz AR, Hornick RB (1974) Live oral cholera vaccine: evaluation of the clinical effectiveness of two strains in human. Infect Immun 10:762–764

    CAS  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide- binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75:2669

    CAS  Google Scholar 

  • Chandrasekhar U, Sinha S, Bhagat HR, Sinha VB, Srivastava BS (1994) Comparative efficacy of biodegradable liposomes and microspheres as carriers for delivery of Vibrio cholerae antigens in the intestine. Vaccine 12:1348–1384

    Google Scholar 

  • Chitnis DS, Sharma KD, Kamat RS (1982) Role of somatic antigen of Vibrio cholerae in adhesion to intestinal mucosa. J Med Microbiol 5:53–61

    Google Scholar 

  • Clemens JD, Harris JR, Sack DA (1988) Field trial of oral cholera vaccines in Bangladesh: results of one year of follow up. J Infect Dis 15:860–869

    Google Scholar 

  • Clemens JD, Sack DA, Harris JR, Van Loon F, Chakraborty J, Ahmed F et al (1990) Field trial of oral cholera vaccines in Bangladesh: results from three-year follow-up. Lancet 335(8684):270–273

    CAS  Google Scholar 

  • Clemens JD, Sack DA, Harris JR, Chakraborty J, Khan MR, Stanton BF et al (1986) Field trial of oral cholera vaccines in Bangladesh. Lancet 2:124–127

    CAS  Google Scholar 

  • Clemens JD, Stanton BF, Chakraborty J, Sack DA, Khan MR, Huda S et al. (1987) B subunit-whole cell and whole cell-only oral vaccines against cholera: studies on reactogenicity and Immunogenicity J lnfect Dis 155:79–85

    Google Scholar 

  • Cohen MB, Giannella RA, Bean J, Taylor DN, Parker S, Hoeper A et al (2002) Randomized, controlled human challenge study of the safety, immunogenicity, and protective efficacy of a single dose of Peru-l5.a live attenuated oral cholera vaccine. Infect Immun 70:1965–1970

    CAS  Google Scholar 

  • Coster TS, Killeen KP, Waldor MK, Beattie DT, Spriggs DR, Kenner JR et al (1995) Immunogenicity, and efficacy of live attenuated Vibrio cholerae O139 vaccine prototype. Lancet 345(8955):949–952

    CAS  Google Scholar 

  • Cuatrecasas P (1973) Gangliosides and membrane receptors for cholera toxin. Biochemistry 12:3558–3566

    CAS  Google Scholar 

  • De SN, Chatterjee DN (1953) An experimental study of the mechanism of action of Vibrio cholerae on the intestinal mucous membrane. J Path Bacteriol 66:559–562

    CAS  Google Scholar 

  • De SN (1959) Enterotoxicity of bacteria-free culture filtrate of Vibrio cholerae. Nature 183:1533–1534

    CAS  Google Scholar 

  • DiRita VJ, Mekalanos JJ (1991) Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS results in signal transduction and transcriptional activation. CeII 64:29

    CAS  Google Scholar 

  • DiRita VJ, Parsot C, Jander G, Mekalanos JJ (1991) Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci USA 88:5403

    CAS  Google Scholar 

  • Dutta NK, Panse MV, Kulkarni DR (1959) Role of cholera toxin in experimental cholera; J Bacteriol 78:594–595

    CAS  Google Scholar 

  • Ehara M, Ishibashi M, Ichinose Y, Iwanaga M, Shimotori S, Naito T (1987) Purification and partial characterization of fimbriae of Vibrio cholerae O1. Vaccine 5:283–288

    CAS  Google Scholar 

  • Fasano A, Baudry B, Pumplin DW, Wasserman SS, Tall BD, Ketley JM, Kaper JB (1991) Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci USA 88:5242

    CAS  Google Scholar 

  • Finkelstein RA, Vasil ML, Holmes RK (1974) Studies on toxinogenesis in Vibrio cholerae l lsolation of mutants with altered toxinogenicity. J Infect Dis 129:117–123

    CAS  Google Scholar 

  • Finkelstein RA, Hanne LF (1982) Purification and characterization of soluble haemagglutinin (cholera lectin) produced by Vibrio cholerae. Infect Immun 36:1199–1208

    CAS  Google Scholar 

  • Finkelstein RA, Boesman-Finkelstein M, Holt P (1983) Vibrio cholerae haemagglutinin/lectin/protease hydrolyses fibronectin and ovomucin : F.M. Bernet revisited. Proc Natl Acad Sci USA 80:1092–1095

    CAS  Google Scholar 

  • Freter R (1955) The serologic character of cholera vibrio mucinase. J Infect Dis 97:238–245

    CAS  Google Scholar 

  • Freter R, Allweiss B, O’Brien PCM, Halstead SA, Macsal MS (1981) Role of chemotaxis in association of motile bacteria with intestinal mucosa: in vitro studies. Infect Immun 34:241–249

    CAS  Google Scholar 

  • Freter R, O’Brien PCM (1981) Role of chemotaxis in association of motile bacteria with intestinal mucosa : chemotactic responses of Vibrio cholerae and description of motile non chemotactic mutants. Infect Immun 34:215–221

    CAS  Google Scholar 

  • Gennaro ML, Greenway PJ (1983) Nucleotide sequences within the cholera toxin operon. Nucleic Acids Res 11:3855

    CAS  Google Scholar 

  • Gennaro ML, Greenway PJ, Broadbent DA (1982) The expression of biologically active cholera toxin in Escherichia coli. Nucleic Acids Res 79:4883

    Google Scholar 

  • Gill DM (1976) The arrangement of subunits in cholera toxin. Biochemistry 15:1242–1246

    CAS  Google Scholar 

  • Gill DM, Rappaport RS (1979) Origin of the enzymatically active A1 fragment of cholera toxin. J Infect Dis 139:674–680

    CAS  Google Scholar 

  • Gill DM, Meren R (1978) ADP-ribosylation of membrane proteins catalysed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci USA. 75: 3050

    Google Scholar 

  • Goldberg I, Mekalanos JJ (1986) Effect of a recA mutation on cholera toxin gene amplification and deletion events. J Bacteriol 165:723

    CAS  Google Scholar 

  • Gotuzzo E, Butron B, Seas C, Penny M, Ruiz R, Losonsky G et al (1993) Safety, immunogenicity and excretion pattern of single dose live oral cholera vaccine CVD 103-HgR in Peruvian adults of high and low socioeconomic levels. Infect Immun 61:3994–3997

    CAS  Google Scholar 

  • Guentzel MN, Berry LJ (1975) Motility as a virulence factor for Vibrio cholerae. Infect Immun 11:90–97

    Google Scholar 

  • Gupta RK, Taylor DN, Bryla DA, Robbins JB, Szu SC (1998) Phase 1 evaluation of Vibrio cholerae O1, serotype lnaba, polysaccharide-cholera toxin conjugates in adult volunteers. Infect lmmun 66:3095–3099

    CAS  Google Scholar 

  • Gupta RK, Szu SC, Finkelstein RA, Robbins JB (1992) Synthesis, characterization and some immunological properties of conjugates composed of the detoxified lipopolysaccharide of Vibrio cholerae Ol serotype lnaba bound to cholera toxin. lnfect lmmun 60:3201–3208

    Google Scholar 

  • Gustafsson B, Holm T (1985) Rapid detection of Vibrio cholerae O1 by motility inhibition and immunofluorescence with monoclonal antibodies. Eur J Clin Microbiol 4:291–294

    CAS  Google Scholar 

  • Hall RH, Khambaty FM, Kothary MH, Keasler SP, Tall BD (1994) Vibrio cholerae non-Ol serogroup associated with cholera gravis genetically and physiologically resembles O1 El Tor cholera strains. lnfect lmmun. 62: 3859–3863

    Google Scholar 

  • Holmes RK, Vasil ML, Finkelstein RA (1975) Studies on toxinogenesis in Vibrio cholerae III. Characterization of nontoxigenic mutants in vitro and in experimental animals. J Clin Invest 55:551

    CAS  Google Scholar 

  • Holmgren J, Svennerhilm AM, Lindblat M (1983) Receptor like glycocompounds in human milk that inhibit classical and el tor Vibrio cholerae cell adherence (agglutination). Infect Immun 39:147–154

    CAS  Google Scholar 

  • Honda T, Finkelstein RA (1979) Selection and characteristics of a Vibrio cholerae mutant lacking the A (A DP-ribosylating) portion of the cholera enterotoxin. Proc Natl A cad Sci USA 76:2052–2056

    CAS  Google Scholar 

  • Hranitzky KW, Mulholland A, Larson AD, Eubanks ER, Hart LT (1980) Characterization of flagellar sheath protein of Vibrio cholerae. Infect Immun 27:597–603

    CAS  Google Scholar 

  • Jacob A, Sinha VB, Sahib MK, Srivastava R, Kaper JB, Srivastava BS (1993) Identification of a 33 kDa antigen associated with an adhesive and colonizing strain of Vibrio cholerae EI Tor and its role in protection. Vaccine 11:376–382

    CAS  Google Scholar 

  • Johnson JA, Joseph A, Morris JG (1995) Capsular polysaccharide protein conjugate vaccines against Vibrio cholerae O139 Bengal. Bull Inst Pasteur 93:285–290

    CAS  Google Scholar 

  • Johnson JA, Salles CA, Panigrahi P, Albert MJ, Wright AC, Johnson RJ et al (1994) Vibrio cholerae O139 synonym Bengal is closely related to Vibrio cholerae El Tor but has important differences. Infect Immun 62:2108–2110

    CAS  Google Scholar 

  • Jonson G, Holmgren J, Svennerholm AM (1991) Identification of a mannose-binding pilus on Vibrio cholerae El Tor Microb Pathog 11:433–441

    Google Scholar 

  • Kabir S (1982) Characterization of the lipopolysaccharide from Vibrio cholerae 395 (Ogawa). Infect lmmun 38:1263–1272

    CAS  Google Scholar 

  • Kabir S (1983) Immunochemical properties of the major outer membrane proteins of Vibrio cholerae. Infect Immun 39:452–455

    CAS  Google Scholar 

  • Kabir S (1987a) Preparation and immunogenicity of a bivalent cell surface protein-polysaccharide conjugate of Vibrio cholerae. J Med Microbiol 23:9–18

    CAS  Google Scholar 

  • Kabir S (1987b) Immunological responses in rabbits to various somatic and secreted antigens of Vibrio cholerae after intra-duodenal inoculation. J Med Microbiol 24:29–40

    CAS  Google Scholar 

  • Kabir S, Showkat A (1983) Characterization of surface properties of Vibrio cholerae. Infect Immun 39:1048–1058

    CAS  Google Scholar 

  • Kaper JB, Lockman H, Baldini MM, Levine MM (1984) A recombinant nontoxigenic Vibrio cholerae strains as attenuated cholera vaccine. Nature 308:655–658

    CAS  Google Scholar 

  • Kaper JB Levine MM (1981) Cloned cholera enterotoxin genes in study and prevention of cholera. Lancet ii 1162–1163

    Google Scholar 

  • Kaper JB, Srivastava BS (1992) Genetics of cholera toxin; Indian J Med. Res A 95:163–168

    CAS  Google Scholar 

  • Kenner JR, Coster TS, Taylor DN, Trofa AF, Barrera-Oro M, Hyman T et al (1995) Peru-l5, an improved live attenuated oral vaccine candidate for Vibrio cholerae Ol. J lnfect Dis 172:1126–1129

    CAS  Google Scholar 

  • Khan AA, Srivastava R, Sinha VB, Srivastava BS (1985) Regulation of toxin biosynthesis by plasmids in Vibrio cholerae. J Gen Microbiol 131:2653–2657

    CAS  Google Scholar 

  • Levine MM, Black RE, Clements ML, Lanata C, Sears S, Honda T Young CR Finkelstein RA (1984) Evaluation in humans of attenuated Vibrio cholerae El Tor Ogawa strain Texas Star-SR as a live oral vaccine. lnfect lmmun 43:515–522

    Google Scholar 

  • Levine MM, Nalin DR, Craig JP, Hoover D, Bergquist ET, Waterman D et al (1979) Immunity to cholera in man: relative role of antibacterial versus antitoxin immunity. Trans R Soc Trop Med Hyg 73:3–9

    CAS  Google Scholar 

  • Levine MM, Kaper JB, Black RE, Clements ML (1983) New knowledge on pathogenesis of bacterial enteric infections as applied to vaccine development. Microbiol Rev 47:510–530

    CAS  Google Scholar 

  • Levine MM, Kaper JB., Herrington D, Ketley Losonsky C, Tacket CO, Tall B, Cryz S (1988) Safety, immunogenicity, and efficacy of recombinant live oral cholera vaccines, CVD 103 and CVD 103-HgR. Lancet; 2 (8609): 467–470

    Google Scholar 

  • Lockman H, Kaper JB (1983) Nucleotide sequence analysis of the A2 and B subunits of Vibrio cholerae enterotoxin. J BioI Chem 158:13722

    Google Scholar 

  • Lockman H, Gallen JE, Kaper JB (1984) Vibrio cholerae enterotoxin genes: nucleotide sequence analysis of DNA encoding ADP-ribosyltransferase. J Bacteriol 159:1086

    CAS  Google Scholar 

  • Lospalluto JJ, Finkelstein RA (1972) Chemical and physical properties of cholera exo-enterotoxin (choleragen) and its spontaneously formed toxoid (choleragenoid). Biochim Biophys Acta 257:158

    CAS  Google Scholar 

  • Majumdar AS, Dutta P, Dutta D, Ghose AC (1981) Antibacterial and antitoxin responses in the serum and milk of cholera patients. Infect Immun 32:1–8

    CAS  Google Scholar 

  • Mekalanos JJ, Murphy JR (1980) Regulation of cholera toxin production in Vibrio cholerae genetic analysis of phenotypic instability in hypertoxigenic mutants. J Bacteriol 141:570

    CAS  Google Scholar 

  • Mekalanos JJ (1983) Duplication and amplification of toxin genes in Vibrio cholerae. CeIl 35:253

    CAS  Google Scholar 

  • Mekalanos JJ, Collier RJ, Romig WR (1979a) Enzymatic activity of cholera toxin. II. Relationships of proteolytic processing, disulfide bond reduction and subunit composition. J Biol Chem 254:5855

    Google Scholar 

  • Mekalanos JJ, Sublett RD, Romig WR (1979b) Genetic mapping of toxin regulatory mutations in Vibrio cholerae. J Bacteriol 139:859

    CAS  Google Scholar 

  • Mekalanos JJ, Swaartz DJ, Pearson GDN, Harford N, Groyne F, de Wilde M (1983) Cholera toxin genes: nucleotide sequence deletion analysis and vaccine development. Nature 306:551

    CAS  Google Scholar 

  • Miller VL, Mekalanos JJ (1985) Genetic analysis of the cholera toxin-positive regulatory gene toxR. J Bacteriol 163:580

    CAS  Google Scholar 

  • Miller VL, Mekalanos JJ (1984) Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc Natl Acad Sci USA 81:3471

    CAS  Google Scholar 

  • Miller VL, DiRita VJ, Mekalanos JJ (1989) Identification of toxS, a regulatory gene whose product enhances ToxR-mediated activation of the cholera toxin promoter. J Bacteriol 171:1288

    CAS  Google Scholar 

  • Miller VL, Taylor RK, Mekalanos JJ (1987) Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48:271

    Google Scholar 

  • Moseley SL, Falkow S (1980) Nucleotide sequence homology between the heat labile enterotoxin gene of Escherichia coli and Vibrio cholerae deoxyribonucleic acid. J Bacteriol 144:444

    CAS  Google Scholar 

  • Nelson ET, Clements JD, Finkelstein RA (1976) Vibrio cholerae adherence and colonization in experimental cholera: electron microscopic studies. Infect Immun 14:527–547

    CAS  Google Scholar 

  • O’ Brien AD, Chen ME, Holmes RK, Kaper JB, Levine MM (1984) Environmental and human isolates of Vibrio cholerae and Vibrio parahaemolyticus produce a Shigella dysenteriae I (Shiga)-like cytotoxin. Lancet 77:764

    Google Scholar 

  • Pal SC, Deb BC, Sen Gupta PG, De SP, Sircar BK, Sen D, Sikdar SN (1980) A controlled field trial of an aluminum phosphate adsorbed cholera vaccine in Calcutta. Bull World Health Org 58:741–745

    CAS  Google Scholar 

  • Parsot C, Mekalanos JJ (1990) Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by heat shock response. Ptoc Natl Acad Sci USA 87:9898

    CAS  Google Scholar 

  • Pearson GDN, Mekalanos JJ (1982) Molecular cloning of Vibrio cholerae enterotoxin genes in E. coli K-12. Proc Natl Acad Sci USA 79:2976–2980

    CAS  Google Scholar 

  • Perez JL, Garcia L, Talavera A, Oliva R, Valmaseda T, Ano G, Perez O, Sierra G (2000) Passive protection of serum from volunteers inoculated with attenuated strain 638 of Vibrio cholerae Ol in animal models. Vaccine 19:376–384

    CAS  Google Scholar 

  • Peterson JW, Hejtmancik EK, Markel DE et al (1979) Antigenic specificity of neutralizing antibody to cholera toxin. Infect Immun 24:774–779

    CAS  Google Scholar 

  • Peterson KM, Mekalanos JJ (1988) Characterization of Vibrio cholerae ToxR regulation: identification of novel genes involved in intestinal colonization. Infect Immun 56:2822

    CAS  Google Scholar 

  • Ramamurthy T, Garg S, Sharma R, Bhattacharya, SK,Nair GB, Shimada T et al. (1993) Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 341:7O3–704

    Google Scholar 

  • Richardson K, Parker CD (1985) Identification and. occurrence of Vibrio cholerae flagellar core proteins in isolated outer membrane. Infect Immun 47:647–679

    Google Scholar 

  • Richardson K, Kaper JB, Levine MM (1989) Human immune response to Vibrio cholerae O1 whole cell and outer membrane antigens. Infect Immun 57:495–501

    CAS  Google Scholar 

  • Richie EE, Punjabi NH, Sidharta YY, Peetosutan KK, Sukandar MM, Wasserman SS et al (2000) Efficacy trial of single-dose live oral cholera vaccine CVD103-HgR in North Jakarta, Indonesia, a cholera-endemic area. Vaccine 18:2399–2410

    CAS  Google Scholar 

  • Saha S, Sanyal SC (1990) Immunobiological relationships of the enterotoxins produced by cholera toxin gene-positive and negative strains of Vibrio cholerae O1. J Med Microbiol 32:33

    CAS  Google Scholar 

  • Sanchez JL, Hayashi KE, Kruger HF, Meza R, English CK, Vidal W et al (1995) lmmunological response to Vibrio cholerae O1 infection and an oral cholera vaccine among Peruvians. Trans R Soc Trop Med Hyg 89:542–545

    CAS  Google Scholar 

  • Sanchez JL, Vasquez B, Begue RE, Meza R, Castellares G, Cabezas C et al (1994) Protective efficacy of oral whole-cell/recombinant-B-subunit cholera vaccine in Peruvian military recruits. Lancet 344(8932):1273–1276

    CAS  Google Scholar 

  • Sanyal SC, Mukerjee S (1969) Live oral cholera vaccine: report of a trial on human volunteer subjects. Bull World Health Org 40:503–511

    CAS  Google Scholar 

  • Sanyal SC, Alam K, Neogi PKB, Huq M1 Al-Mahmud KA (1983) A new cholera toxin. Lancet 11:337

    Google Scholar 

  • Saroso JS, Bahrawi W, Witjaksono H, Budiarso RL, Brotowasisto Bencic Z et al (1978) A controlled field trial of plain and aluminium hydroxide-adsorbed cholera vaccines in Surabaya, Indonesia, during 1973–75. Bull World Health Org 56:619–627

    CAS  Google Scholar 

  • Schrank GD, Verwey WF (1976) Distribution of cholera organisms in experimental Vibrio cholerae infections: proposed mechanisms of pathogenesis and antibacterial immunity. Infect Immun 13:195–203

    CAS  Google Scholar 

  • Sharma SK, Moe TS, Srivastava R, Chandra D, Srivastava BS (2011) Functional characterization of VC1929 of Vibrio cholerae El Tor: role in mannose-sensitive haemagglutination, virulence and utilization of sialic acid. Microbiology, UK 157:3180–3186

    CAS  Google Scholar 

  • Shrivastava DL (1964) Enzymes in Vibrio cholerae. Indian J Med Res 52:801–808

    CAS  Google Scholar 

  • Singh SN, Srivastava R, Sinha VB, Srivastava BS (1994) A 53 kDa protein of Vibrio cholerae classical strain O395 involved in intestinal colonization. Microb Pathog 17:69–78

    CAS  Google Scholar 

  • Sinha VB, Srivastava BS (1979) Attenuation of virulence by P and V plasmids in Vibrio cholerae: strains suitable for oral immunization. Bull WHO 57:643–647

    CAS  Google Scholar 

  • Sinha VB, Srivastava BS (1978a) Suppression of pathogenicity by P and V plasmids in Vibrio cholerae. J Gen Microbial 104:251–255

    CAS  Google Scholar 

  • Sinha VB, Srivastava BS (1978b) Plasmid induced loss of virulence in Vibrio cholerae. Nature 276:708–709

    CAS  Google Scholar 

  • Sinha VB, Jacob A, Srivastava R, Kaper JB, Srivastava BS (1993) Identification of the flagellar antigens of Vibrio cholerae EI Tor and their role in protection. Vaccine 11:372–375

    CAS  Google Scholar 

  • Smith HW, Halls S (1968) The transmissible nature of the genetic factor in Escherichia coli that controls enterotoxin production. J Gen Microbiol 58:319

    Google Scholar 

  • Sperandio V, Giron JA, Silveira WD, Kaper JB (1995) The OmpU outer membrane protein a potential adherence factor of Vibrio cholerae. Infect Immun 63:4433–4438

    CAS  Google Scholar 

  • Sporecke I, Castro D, Mekalanos JJ (1984) Genetic mapping of Vibrio. cholerae enterotoxin structural genes. J Bacteriol 157:253

    CAS  Google Scholar 

  • Srivastava R, Srivastava BS (1980) Isolation of a nonadhesive mutant of Vibrio cholerae and chromosomal localization of the gene controlling mannose-sensitive adherence. J Gen Microbiol 117:275–278

    CAS  Google Scholar 

  • Srivastava R, Khan AA, Srivastava BS (1985) Immunological detection of cloned antigenic genes of Vibrio cholerae in Escherichia coli. Gene 40:267

    CAS  Google Scholar 

  • Srivastava R, Sinha VB, Srivastava BS (1980) Events in the pathogenesis of experimental cholera: role of bacterial adherence and multiplication. J Med Microbial 13:1–9

    CAS  Google Scholar 

  • Srivastava R, Sinha VB, Srivastava BS (1979) Reevaluation of antibacterial and antitoxin immunities in experimental cholera. Indian J Med Res 70:369–373

    CAS  Google Scholar 

  • Srivastava R, Sinha VB, Srivastava BS (1989) Chromosomal transfer and in vivo cloning of genes in Vibrio cholerae using RP4 mini-Mu. Gene 75:3855

    Google Scholar 

  • Stewart-Tull DE, Lucas C, Bleakley CR (2004) Experimental immunisation and protection of guinea pigs with Vibrio cholerae toxoid and mucinases, neuraminidase and proteinase. Vaccine 22:2137–2145

    CAS  Google Scholar 

  • Su-Arehawaratana P, Singharaj P, Taylor DN, Hoge C, Trofa A, Kuvanont K et al (1992) Safety and immunogenicity of different immunization regimens of CVD103-HgR live oral cholera vaccine in soldiers and civilians in Thailand. J lnfect Dis 165:1042–1048

    CAS  Google Scholar 

  • Suharyono SC, Witham N, Punjabi N, Heppner DG, Losonsky C, Totosudirjo H et al (1992) Safety and immunogenicity of single dose live oral cholera vaccine CVD 103-HgR in 5–9 year-old Indonesian children. Lancet 340(8821):689–694

    CAS  Google Scholar 

  • Svennerholm AM Holmgren J (1976) Synergistic protective effect in rabbits of immunization with Vibrio cholerae lipopolysaccharide and toxin/toxoid. Infect Immun 13:735–740

    Google Scholar 

  • Svennerholm AM, Jertborn M, Gothefors L, Karim A, Sack DA, Holmgren J (1984) Mucosal antitoxin and antibacterial immunity after cholera disease and after immunization with a combined B-subunit–whole cell vaccine. J Infect Dis 149:884–893

    CAS  Google Scholar 

  • Tacket CO, Forrest B, Morona R, Attridge SR, LaBrooy J, Tall BD et al. (1990) Safety, immunogenicity, and efficacy against cholera challenge in humans of a typhoid-cholera hybrid vaccine derived from Salmonella typhi Ty21a. lnfect lmmun 58:1620–1627

    Google Scholar 

  • Tacket CO, Losonsky G, Nataro JP, Comstock L, Michalski J, Edelman R et al (1995) Initial clinical studies of CVD112 Vibrio cholerae O139 live oral vaccine: safety and efficacy against experimental challenge. J lnfect Dis 172:883–886

    CAS  Google Scholar 

  • Takeda T, Peina Y, Opwa A, Dohi S, Abc H, Nair GB, Pal SC (1991) Detection of heat-stable enterotoxin in a cholera toxin gene-positive strain of Vibrio cholerae O1. FEMS Microbiol Lett 64:23

    CAS  Google Scholar 

  • Taylor DN, Cardenas V, Sanchez JL, Begue RE, Gilman R, Bautista C, Perez J, Puga R, Gaillour A, Meza R, Echeverria P, Sadoff JC (2000) Two-year study of the protective efficacy of the oral whole cell plus recombinant B subunit cholera vaccine in Peru. J Infect Dis 181:1667–1673

    CAS  Google Scholar 

  • Taylor DN, Sanchez JL, Castro JM, Lebron C, Parrado CM, Johnson DE et al (1999) Expanded safety and immunogenicity of a bivalent, oral, attenuated cholera vaccine, CVD103-HgR plus CVD111, in United States military personnel stationed in Panama. Infect lmmun 67:2030–2034

    CAS  Google Scholar 

  • Taylor RK, Miller VL, Furlong D, Band Mekalanos JJ (1987) Use of phoA gene fusions to identify a pilus colonizing factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84:2833–2837

    CAS  Google Scholar 

  • Teppema JS, Guinee PAM, Ibrahim AA, Paques M, Ruitenberg EJ (1987) In vivo adherence and colonization of Vibrio cholerae strains that differ in hemagglutinating activity and motility. Infect Immun 55:2093–2097

    CAS  Google Scholar 

  • Thunqapathra M, Sharma C, Gupta N, Ghosh RK, Mukhbpadhyay A, Koley H et al (1999) Construction of a recombinant live oral vaccine from a non-toxigenic strain ol Vibrio cholerae O1 serotype Inaba biotype El Tor and assessment of its reactogenicity and immunogenicity in the rabbit model. Immunol Lett 68:219–227

    Google Scholar 

  • Trach DD, Cam PD, Ke NT, Rao MR, Dinh D, Hang PV et al (2002) Investigations into the safety and immunogenicity of a killed oral cholera vaccine developed in Vietnam. Bull World Health Org 80:2–8

    CAS  Google Scholar 

  • Trach DD, Clemens JD, Ke NT, Thuy HT, Son ND, Canh DG et al. (1997) Field trial of a locally produced, killed, oral cholera vaccine in Vietnam. Lancet. 349 (9O47):231–235

    Google Scholar 

  • Trucksis M, Galen JE, Michalski J, Fasano A, Kaper JB (1993) Accessory cholera enterotoxin (ACE), the third toxin of a Vibrio cholerae virulence cassette. Proc Natl Acad Sci USA 90:5267–5271

    CAS  Google Scholar 

  • van Loon FP, Clemens JD, Chakraborty J, Rao MR, Kay BA, Sack DA et al (1996) Field trial of inactivated oral cholera vaccines in Bangladesh: results from 5 years of follow-up. Vaccine 14:162–166

    Google Scholar 

  • Vasil ML, Holmes RK, Finkelstein RA (1975) Conjugal transfer of chromosomal gene determining production of enterotoxin in Vibrio cholerae. Science 187:849

    CAS  Google Scholar 

  • Wachsmuth I., Blake P.A., and Olsvik O. (eds) 1994. Vibrio cholerae and cholera: molecular to global perspective. American Society for Microbiology, Washington D.C. USA.

    Google Scholar 

  • Waldor MK, Mekalanos JL (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    CAS  Google Scholar 

  • Yang GCH, Schrank GD, Freeman BA (1977) Purification of flagellar cores of Vibrio cholerae. J Bacterial 129:1127–1128

    Google Scholar 

  • Yeh MK, Chiang CH (2004) Inactive Vibrio cholerae whole-cell vaccine-loaded biodegradable microparticles: in vitro release and oral vaccination. J Microencapsulation 21:91–106

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahm S. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Srivastava, B.S. (2014). Cholera and Drinking Water. In: Singh, P., Sharma, V. (eds) Water and Health. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1029-0_5

Download citation

Publish with us

Policies and ethics