Skip to main content

Dengue: A Water-Related Mosquito-Borne Disease

  • Chapter
  • First Online:
Water and Health
  • 1623 Accesses

Abstract

Dengue is a common vector-borne disease of tropical and subtropical areas, affecting about 50 million people each year and exposing more than 2.5 billion people at risk. Dengue virus (DENV), responsible for the disease, belongs to family Flaviviridae, genus Flavivirus and has four distinguished serotypes (DENV 1, DENV 2, DENV 3, and DENV 4). The main vector of the virus is Aedes aegypti mosquito. Water logging increases mosquito density and an increase in vector-borne diseases (such as dengue, malaria, West Nile fever) through the expansion in the number and range of vector habitats. Infection with any of the DENV serotypes may be asymptomatic in the majority of cases or may result in a wide spectrum of clinical symptoms, ranging from a mild flu-like syndrome (known as dengue fever [DF]) to the most severe forms of the disease; Dengue Hemorrhagic Fever/ Dengue Shock Syndrome (DHF/DSS). Recently in 2008, WHO has revised its classification and divides the clinical illness to non-severe dengue, dengue ± warning signs, and severe dengue. Pathogenesis of severe dengue disease is very complex and not properly elucidated. Timely diagnosis of the disease is the key to control it. Routine diagnosis largely depends upon NS1 antigen, IgM, and genome detection by different methods. Confirmatory diagnosis is by cell culture method, the most important of which is C6/36 mosquito cell line or intrathoracic inoculation of mosquito. Till date, no effective vaccine is available in the market. Different approaches are being used to develop various formulations of vaccine, but are of not much use. Alternative vaccine strategies in the form of small interfering RNA (siRNA) and micro RNA (miRNA) seem to be quite promising in present era. Though these technologies are in very primitive phase, various studies are going on all over the world to bring them to reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R, Kapoor S, Nagar R, Misra A, Tandon R, Mathur A et al (1999) Clinical study of the patients with dengue hemorrhagic fever during the epidemic of 1996 at Lucknow, India. SE Asian J Trop Med Public Health 30:735–740

    CAS  Google Scholar 

  • Anonymous (1986) Dengue hemorrhagic fever, diagnosis, treatment and control. World health organization, Switzerland

    Google Scholar 

  • Assenberg R, Mastrangelo E, Walter TS, Verma A, Milani M, Owens RJ et al (2009) Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication. J Virol 83(24):12895–12906

    Article  CAS  Google Scholar 

  • Bancroft TL (1906) On the aetiology of dengue fever. Aust Med Gaz 25:17–18

    Google Scholar 

  • Barnes WJS, Rosen L (1974) Fatal hemorrhagic disease and shock associated with primary dengue infection on a pacific island. Am J Trop Med Hyg 23:495–506

    CAS  Google Scholar 

  • Bhamarapravati N (1997) Live attenuated tetravalent dengue vaccine. In: Gubler DJ, Kuno G (eds) Dengue and dengue hemorrhagic fever. CAB International, London, pp 367–378

    Google Scholar 

  • Bhamarapravati N, Yoksan S (1989) Study of bivalent dengue vaccine in volunteers. Lancet 1077

    Google Scholar 

  • Bhamarapravati N, Yoksan S, Chayaniyayothian T, Angsubhakorn S, Bunyaratvej A (1987) Immunization with a live attenuated dengue-2 virus candidate vaccine (16681-PDK 53): clinical, immunological and biological responses in adult volunteers. Bull WHO 65:185–195

    Google Scholar 

  • Bharaj P, Chahar HS, Pandey A, Diddi K, Dar L, Guleria R, Kabra SK, Broor S (2008) Concurrent infections by all four dengue virus serotypes during an outbreak of dengue in 2006 in Delhi. India Virol J 2008(5):1–4

    Article  Google Scholar 

  • Bhattacharjee N, Mukherjee KK, Chakravarti SK, Mukherjee MK, De PN, Sengupta M, Banik GB, Bhowmick P, Sinha SK, Chakraborty MS (1993) Dengue haemorrhagic fever (DHF) outbreak in Calcutta—1990. J Commun Dis 25:10–14

    CAS  Google Scholar 

  • Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, Cook S et al (2009) Structure and functionality in flavivirus NS-proteins: prospectives for drug design. Antiviral Res

    Google Scholar 

  • Bozza FA, Cruz OG, Zagne SM, Azeredo EL, Nogueira RM, Assis EF, Bozza PT, Kubelka CF (2008) Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis 8:86

    Google Scholar 

  • Brandt WE (1988) Current approaches to the development of dengue vaccines and related aspects of the molecular biology of flaviviruses. J Infect Dis 157:1105–1111

    Article  CAS  Google Scholar 

  • Brandt WE (1990) Development of dengue and Japanese encephalitis vaccines. J Infect Dis 162:577–583

    Article  CAS  Google Scholar 

  • Bray M, Lai C-J (1991) Construction of intertypic chimeric dengue viruses by substitution of structural protein genes. Proc Natl Acad Sci USA 88:10342–10346

    Article  CAS  Google Scholar 

  • Broor S, Dar L, Sengupta S, Chakaraborty M, Wali JP, Biswas A, Kabra SK, Jain Y, Seth P (1997) Recent dengue epidemic in Delhi, India. In: Saluzzo JE, Dodet B (ed) Factors in the emergence of arbovirus diseases, Elsevier, Paris, pp 123–127

    Google Scholar 

  • Campbell CL, Black WCT, Hess AM, Foy BD (2008a) Comparative genomics of small RNA regulatory pathway components in vector mosquitoes. BMC Genomics 9(1):425

    Article  Google Scholar 

  • Campbell CL, Keene KM, Brackney DE, Olson KE, Blair CD, Wilusz J, Foy BD (2008b) Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8:47

    Google Scholar 

  • Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression and replication. Annul Rev Microbiol 44:649–688

    Article  CAS  Google Scholar 

  • Chambers TJ, Tsai TF, Pervikov Y, Monath TP (1997) Vaccine development against dengue and Japanese encephalitis: report of a world health organization meeting. Vaccine 15:1494–1502

    Article  CAS  Google Scholar 

  • Chen W, Kawano H, Men R, Clark D, Lai C-J (1995) Construction of intertypic chimeric dengue viruses exhibiting type 3 antigenicity and neurovirulence for mice. J Virol 69:5186–5190

    CAS  Google Scholar 

  • Dar L, Broor S, Sengupta S, Xess I, Seth P (1999) The first major outbreak of dengue hemorrhagic fever in Delhi. India Emerg Infect Dis 5:589–590

    Article  CAS  Google Scholar 

  • Dar L, Gupta E, Narang P, Broor S (2006) Co-circulation of dengue serotypes 1,2,3 and 4 during the 2003 outbreak in Delhi. India Emerg Infect Dis 12:352–353

    Article  Google Scholar 

  • Dash PK, Saxena P, Abhyankar A, Bhargava R, Jana AM (2005) Emergence of dengue virus type-3 in northern India. SE Asian J Trop Med Public Health 36:370–377

    Google Scholar 

  • Dash PK, Parida MM, Saxena P, Abhyankar A, Singh CP, Tewari KN, Jana AM, Sekhar K, Rao PV (2006) Reemergence of dengue virus type-3 (subtype-III) in India: implications for increased incidence of DHF & DSS. Virol J 6:3–55

    Google Scholar 

  • de Macedo FC, Nicol AF, Cooper LD, Yearsley M, Pires AR, Nuovo GJ (2006) Histologic, viral, and molecular correlates of dengue fever infection of the liver using highly sensitive immunohistochemistry. Diagn Mol Pathol 15:223–228

    Article  Google Scholar 

  • Deubel V, Bordier M, Megret F, Gentry MK, Schlesinger JJ, Girard M (1991) Processing, secretion, and immunoreactivity of carboxy terminally truncated dengue-2 virus envelope proteins expressed in insect cells by recombinant baculoviruses. Virology 180:442–447

    Article  CAS  Google Scholar 

  • Dietz V, Gubler DJ, Ortiz S, Kuno G, Casta-Velez A, Sather GE, Gomez I, Vergne E (1996) The 1986 dengue and dengue hemorrhagic fever epidemic in Puerto Rico: epidemiologic and clinical observations. PR Health Sci J 15:201–210

    CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  Google Scholar 

  • Gaunt M, Sall A, de Lamballerie X et al (2001) Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J Gen Virol 82:1867–1876

    CAS  Google Scholar 

  • Gubler DJ (1987) Dengue and dengue hemorrhagic fever in the Americas. PR Health Sci J 6:107–111

    CAS  Google Scholar 

  • Gubler DJ (1989) Aedes aegypti and Aedes aegypti-borne disease control in the 1990s: top down or bottom up. Am J Trop Med Hyg 40:571–578

    CAS  Google Scholar 

  • Gubler DJ (1997) Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. In: Gubler DJ, Kuno G (eds) Dengue and dengue hemorrhagic fever. CAB International, London, pp 1–22

    Google Scholar 

  • Gubler DJ (1998) The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future. Ann Acad Med Singap 27:227–234

    Google Scholar 

  • Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103

    Article  CAS  Google Scholar 

  • Gubler DJ (2006). Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp 277, 3–16; discussion 16–22, 71–13, 251–253

    Google Scholar 

  • Gubler DJ, editor KG (1997) Dengue and dengue hemorrhagic fever, CAB International, UK

    Google Scholar 

  • Gubler DJ, Kuno G, Sather GE, Velez M, Oliver A (1984) Mosquito cell cultures and specific monoclonal antibodies in surveillance for dengue viruses. Am J Trop Med Hyg 33:158–165

    CAS  Google Scholar 

  • Gupta E, Dar L, Kapoor G, Broor S (2006) The changing epidemiology of dengue in Delhi. India Virol J 3:92

    Article  Google Scholar 

  • Guzman MG, Kouri G (2002) Dengue: an update. Lancet Infect Dis 2(1):33–42

    Article  Google Scholar 

  • Hahn YS, Galler R, Hunkapillar T, Dalrymple JM, Strauss JH, Strauss EG (1988) Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology 162:167–180

    Article  CAS  Google Scholar 

  • Halstead SB (1970) Observations related to pathogenesis of dengue hemorrhagic fever. VI. Hypotheses and discussion. Yale J Biol Med 42:350–362

    CAS  Google Scholar 

  • Halstead SB (1988) Pathogenesis of dengue: challenges to molecular biology. Science 239:476–481

    Article  CAS  Google Scholar 

  • Halstead SB, O’Rourke EJ (1977a) Antibody-enhanced dengue virus infection in primate leukocytes. Nature (London) 265:739–741

    Article  CAS  Google Scholar 

  • Halstead SB, O’Rourke EJ (1977b) Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 146:210–217

    Google Scholar 

  • Hirsch A (1883) Dengue, a comparatively new disease: its symptoms. In: Handbook of geographical and historical pathology, vol 1. Sydenham Society, London, pp 55–81

    Google Scholar 

  • Howe GM (1977) World geography of human diseases. Academic Press, Inc, New York

    Google Scholar 

  • Kapoor M, Zhang L, Mohan PM, Padmanabhan R (1995) Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). Gene 162:175–180

    Article  CAS  Google Scholar 

  • Kochel T, Wu S-J, Raviprakash K, Hobart P, Hoffman SL, Hayes CG (1997) Inoculation of plasmids expressing the dengue-2 envelope gene elicit neutralizing antibodies in mice. Vaccine 15:547–552

    Article  CAS  Google Scholar 

  • Kramer LD, Ebel GD (2003) Dynamics of flavivirus infection in mosquitoes. Adv Virus Res 60:187–232

    Article  Google Scholar 

  • Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E et al (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108(5):717–725

    Article  CAS  Google Scholar 

  • Kukreti H, Chaudhary A, Rautela RS, Anand R, Mittal V, Chhabra M, Bhattacharya D, Lal S, Rai A (2008) Emergence of an independent lineage of dengue virus type 1 (DENV-1) and its co-circulation with predominant DENV-3 during the 2006 dengue fever outbreak in Delhi. Int J Infect Dis 12(5):542–549

    Article  CAS  Google Scholar 

  • Kumar R, Tripathi S, Tambe JJ, Arora V, Nag VL (2008) Dengue encephalopathy in children in Northern India: clinical features and comparison with non dengue. J Neurol Sci 269:41–48

    Article  Google Scholar 

  • Kurukumbi M, Wali JP, Broor S, Aggarwal P, Seth P, Handa R, Dhar L, Vajapayee M (2001) Seroepidemiology and active surveillance of dengue fever/dengue haemorrhagic fever in Delhi. Indian J Med Sci 55:149–156

    CAS  Google Scholar 

  • Lanciotti RS et al (1994) Molecular evolution and epidemiology of dengue-3 viruses. J Gen Virol 75(Pt 1):65–75

    Article  CAS  Google Scholar 

  • Leitmeyer KC (1999) Dengue virus structural differences that correlate with pathogenesis. J Virol 73(6):4738–4747

    CAS  Google Scholar 

  • Limon-Flores AY, Perez-Tapia M, Estrada-Garcia I, Vaughan G, Escobar-Gutierrez A, Calderon-Amador J, Herrera-Rodriguez SE, Brizuela- Garcia A, Heras-Chavarria M, Flores-Langarica A, Cedillo-Barron L, Flores-Romo L (2005) Dengue virus inoculation to human skin explants: an effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells. Int J Exp Pathol 86:323–334

    Article  Google Scholar 

  • Martina BEE, Koraka P, Osterhaus ADME (2009) Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22(4):564–581

    Google Scholar 

  • Mason PW, Dalrymple JM, Gentry MK, McCown JM, Hoke CH, Burke DS, Fournier MJ, Mason TL (1989) Molecular characterization of a neutralizing domain of the Japanese encephalitis virus structural glycoprotein. J Gen Virol 70:2037–2049

    Article  CAS  Google Scholar 

  • Mason PW, Pincus S, Fournier MJ, Mason TL, Shope RE, Paoletti E (1991) Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology 180:294–305

    Article  CAS  Google Scholar 

  • Messer WB (2003) Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg Infect Dis 9(7):800–809

    Article  Google Scholar 

  • Miller S, Kastner S, Krijnse-Locker J, Buhler S, Bartenschlager R (2007) The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2 K regulated manner. J Biol Chem 282(12):8873–8882

    Article  CAS  Google Scholar 

  • Netsawang J, Noisakran S, Puttikhunt C, Kasinrerk W, Wongwiwat W, Malasit P et al (2010) Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus Res 147(2):275–283

    Article  CAS  Google Scholar 

  • Nobuchi H (1979) The symptoms of a dengue-like illness recorded in a Chinese medical encyclopedia. Kanpo Rinsho 26:422–425 (In Japanese)

    Google Scholar 

  • Padbidri VS, Thakre JP, Risbud AR, Joshi GD, Singh A, Mavale MS, Gupta VP (1996) An outbreak of dengue hemorrhagic fever in Jammu. Indian J Virol 12:83–87

    Google Scholar 

  • Pandey N, Nagar R, Gupta S, Omprakash, Khan D, Singh DD, Mishra G, Prakash S, Singh KP, Singh M, Jain A (2012) Trend of dengue virus infection at Lucknow, north India (2008–2010): a hospital based study. Indian J Med Res 136(5):862–867

    Google Scholar 

  • Parida MM, Dash PK, Upadhyay C, Saxena P, Jana AM (2002) Serological and virological investigation of an outbreak of dengue fever in Gwalior, India. Indian J Med Res 116:248–254

    CAS  Google Scholar 

  • Pepper OHP (1941) A note on David Bylon and dengue. Ann Med Hist 3rd Ser 3:363–368

    Google Scholar 

  • Roehrig JT, Johnson AH, Hunt AR, Beaty BJ, Mathews JH (1992a) Enhancement of the antibody response to flavivirus B-cell epitopes by using homologous or heterologous T-cell epitopes. J Virol 66:3385–3390

    CAS  Google Scholar 

  • Roehrig JT, Mathews JH, Risi PA, Brubaker JR, Hunt AR (1992b) Mapping of biologically active helper T-cell epitopes on the flavivirus envelope glycoprotein. In: Brown F, Chanock RM, Ginsberg H, Lerner RA (eds) Vaccines 92. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 277–281

    Google Scholar 

  • Rothman AL (2004) Dengue: defining protective versus pathologic immunity. J Clin Invest 113(7):946–951

    CAS  Google Scholar 

  • Rush AB (1789) An account of the bilious remitting fever, as it appeared in Philadelphia in the summer and autumn of the year 1780. Medical enquiries and observations, Prichard and Hall, Philadelphia, pp 104–117

    Google Scholar 

  • Sabin AB (1952) Research on dengue during World War II. Am J Trop Med Hyg 1:30–50

    CAS  Google Scholar 

  • Sabin A (1959) Survey of knowledge and problems in field of arthropod-borne virus infections. Arch Gesamte Virusforsch 9:1–10

    Article  CAS  Google Scholar 

  • Sanchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD (2009) Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog 5(2):e1000299

    Article  Google Scholar 

  • WHO (2009) Dengue guidelines for diagnosis, treatment, prevention and control. World Health Organization, Geneva

    Google Scholar 

  • Yap TL, Xu T, Chen YL, Malet H, Egloff MP, Canard B et al (2007) Crystal structure of the dengue virus RNA dependent RNA polymerase catalytic domain at 1.85 angstrom resolution. J Virol 81(9):4753–4765

    Article  CAS  Google Scholar 

  • Young PR, Hilditch PA, Bletchly C, Halloran W (2000) An antigen capture enzyme linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. J Clin Micribiol 38(3):1053–1057

    CAS  Google Scholar 

  • Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS et al (2004) Conformational changes of the flavivirus E glycoprotein. Structure 12(9):1607–1618

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Jain, B., Jain, A. (2014). Dengue: A Water-Related Mosquito-Borne Disease. In: Singh, P., Sharma, V. (eds) Water and Health. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1029-0_1

Download citation

Publish with us

Policies and ethics