Channel Estimation and Equalization for Time-Varying OFDM System Using Kalman Filter

  • C. Rajasekhar
  • D. Srinivasa rao
  • K. M. K. Chaitanya
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 222)

Abstract

Orthogonal Frequency Division Multiplexing (OFDM) technique has become major multi carrier technique with the advent of wireless and mobile communications. It is known that OFDM is effective over frequency selective fading. However, ICI (inter-carrier interference) destroys the subcarrier orthogonality in time varying channels. The ICI can be mitigated by using different channel estimation schemes at receiver of fast fading systems.Though many channel estimation techniques have already existed, they suffer from complexity in implementation. Efficient channel estimation can be done by assuming channel as a linear state space model i.e., Kalman filter model. This paper discusses about the Kalman filter based channel estimation technique that can be implemented with less complexity yet efficient for a time varying channel model. The Equalization is employedusing a time-domain filter that maximizes receiver SINR. Also.the proposed technique’s efficiency is proved in terms of MSEE, BER in comparison with other techniques.

Keywords

OFDM ICI Time varying channel Kalman filter model Tapped delay line model CE-BEM channel Equalization MSEE BER 

References

  1. 1.
    van de Beek JJ, Edfors O, Sandell M,Wilson SK, Borjesson PO (1995). On channel estimationin OFDM systems. In: Proceedings IEEE 45th Vehicle Technology Conferences Chicago, pp 815–819Google Scholar
  2. 2.
    Negi R, Cioffi J (1998) Pilot tone selection for channel estimation in a mobile OFDM system. IEEETrans Consumer Electron 44(3):1122–1128CrossRefGoogle Scholar
  3. 3.
    Yuping Z, Aiping H (1997) A novel channel estimation method for OFDM mobile communicationsystems based on pilot signals and transform-domain processing. In: The 47th IEEE Vehicle Technology Conferences, vol 4–7. pp 2089–2093Google Scholar
  4. 4.
    Gupta P, Mehra DK (2006). Kalman filter based channel estimation and ICI suppression for highmobility OFDM systems. In: The IEEE international conferences on industrial Technology, ICIT 2006 15–17, pp 612–615Google Scholar
  5. 5.
    Mazet L, Buzenac-Settineri V, de Courville M, Duhamel P (2002) An EMbased semi-blind channel estimation algorithm designed for OFDM systems. In: the 36th asilomar conferences on signals. Syst Comp 2:1642–1646Google Scholar
  6. 6.
    Ma X, Kobayashi H, Schwartz SC (2002). An EM-based estimation of OFDM signals. In: IEEE wireless communication and networking Confercences, WCNC-2002, vol 1. pp 228—232). 17–21 Mar 2002Google Scholar
  7. 7.
    Moon TK (1996) The expectation-maximization algorithm. IEEE Sig Proc Mag 13(6):47–60CrossRefGoogle Scholar
  8. 8.
    Muquet B, de Courville M, Duhamel P (2002) Subspace-based blind and semi-blind channel estimation for OFDM systems. IEEE Trans Signal Process 50(7):1699–1712CrossRefGoogle Scholar
  9. 9.
    Petropulu A, Ruifeng Z, Lin R (2004) Blind OFDM channel estimation through simple linear precoding. IEEE Trans Wireless Commun 3(2):647–655CrossRefGoogle Scholar
  10. 10.
    Wang X, Liu KJR (1999) Adaptive channel estimation using cyclic prefix in multicarrier modulationsystem. IEEE Commun Lett 3(10):291–293CrossRefGoogle Scholar
  11. 11.
    Wang X, Liu KJR (2003) Performance analysis for adaptive channel estimation exploiting cyclic prefix in multicarrier modulation systems. IEEE Trans Commun 51(1):94–105CrossRefGoogle Scholar
  12. 12.
    Tsatsanis MK, Giannakis GB (1996) Modeling and equalization of rapidly fading channels. International Journal of Adaptive Control Signal Processing. Wiley 10:159–176MATHGoogle Scholar
  13. 13.
    Giannakis GB, Tepedelenlioglu C (1998) Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proc IEEE 86(10):1969–1986CrossRefGoogle Scholar
  14. 14.
    Ma X, Giannakis GB, Ohno S (2003) Optimal training for block transmissions over doubly selective wireless fading channels. IEEE Trans Signal Process 51(5):1351–1366MathSciNetCrossRefGoogle Scholar
  15. 15.
    Haykin S (2002). Adaptive filter theory, 4th edn. Pearson Education, London, pp 466–485Google Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • C. Rajasekhar
    • 1
  • D. Srinivasa rao
    • 2
  • K. M. K. Chaitanya
    • 1
  1. 1.Department of ECEGITAM UniversityVishakapatanamIndia
  2. 2.Department of ECEGMRITRajamIndia

Personalised recommendations