Advertisement

Local Fractal Dimension-Based Color Quantization for Error Diffusion Techniques

  • Mohammed Hassan
  • Chakravarthy Bhagvati
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 221)

Abstract

Reconstruction of an image with a limited number of colors (color palette) leads to highly visible degradations in image quality known as false contours. A way to overcome this problem is to perform dithering techniques. In this paper we propose a color quantization method for use with color dithering techniques. It makes use of local fractal dimensions to allocate larger weight to pixels in low activity regions where false contours in an image are most likely to occur. The results show that our method significantly removes false contours and color impulses as well as preserves textures that are commonly lost in high activity regions when applying dithering techniques to color quantized images.

Keywords

Color quantization Fractal dimensions Error diffusion Combined quantization Error diffusion. 

References

  1. 1.
    Rui X, Chang C, Srikanthan T (2002) On the initialization and training methods for Kohonen self-organizing feature maps in color image quantization. In: First IEEE International Workshop on Electronic Design, Test and Applications, 321–325 2002Google Scholar
  2. 2.
    Scheunders P (1997) A genetic C-means clustering algorithm applied to color image quantization. Pattern Recogn 30:859–866Google Scholar
  3. 3.
    Velho L, Gomes J, Sobreiro M (1997) Color image quantization by pairwise clustering. In: 10th brazilian symposium on computer graphics and image processing, IEEE Computer Society, 203–207 1997Google Scholar
  4. 4.
    Sharma G (1996) Digital color imaging, CRC Press (1996)Google Scholar
  5. 5.
    Heckbert P (1982) Color image quantization for frame buffer display. ACM Trans Comput Graphics (SIGGRAPH) 16:297–307Google Scholar
  6. 6.
    Joy G, Xiang Z (1993) Center-cut for color-image quantization. Visual Computation 10:62–66Google Scholar
  7. 7.
    Gervautz M, Purgathofer W (1988) A simple method for color quantization: octree quantization. In: New trends in computer graphics, Springer, Verlag, pp 219–231Google Scholar
  8. 8.
    Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137Google Scholar
  9. 9.
    Wu X (1991) Efficient statistical computations for optimal color quantization. Graphics Gems, 11, J. Arvo, Ed. New York: Academic, 126–133Google Scholar
  10. 10.
    Lim YW, Lee SU (1990) On the color image segmentation algorithm based on the thresholding and the fuzzy C-means. techniques. Pattern Recogn 23:935–952CrossRefGoogle Scholar
  11. 11.
    Dekker A H (1994) Kohonen neural networks for optimal colour quantization. Netw Computat Neural Syst 5:351–367Google Scholar
  12. 12.
    Floyd RW, Steinberg L (1976) An adaptive algorithm for spatial grey scale. In: Proceedings of the society of information display 17:75–77 1976Google Scholar
  13. 13.
    Stucki P (1981) Mecca-a multiple-error correcting computation algorithm for bilevel image hardcopy reproduction. Research Report RZ1060, IBM Research LaboratoryGoogle Scholar
  14. 14.
    Jarvis JF, Judice CN, Ninke WH (1976) A survey of techniques for the display of continuous tone pictures on bilevel displays. Comput Graphics Image Process 5:13–40CrossRefGoogle Scholar
  15. 15.
    Orchard MT, Bouman CA (1991) Color quantization of images. IEEE Trans Signal Process 39:2677–2690CrossRefGoogle Scholar
  16. 16.
    Akarun L, Ozdemir D, Yalcin O (1996) A modified quantization algorithm for dithering of color images. Electron Lett 32:1185–1186CrossRefGoogle Scholar
  17. 17.
    Scheunders P, De Backer S (1997) Joint quantization and error diffusion of color images using competitive learning. In: International conference on image processing, 811–814 1997Google Scholar
  18. 18.
    Ozdemir D, Akarun L (2001) Fuzzy algorithms for combined quantization and dithering. IEEE Trans Image Process 10:923–931CrossRefGoogle Scholar
  19. 19.
    Pentland A (1984) Fractal-based description of natural scenes. IEEE Trans Pattern Anal Mach Intell 6:661–674CrossRefGoogle Scholar
  20. 20.
    Pentland A (1986) Shading into texture. Artif Intell 29:147–170Google Scholar
  21. 21.
    Liu Y, Li Y (1997) Image feature extraction and segmentation using fractal dimension. In: Proceedings of international conference on information, communications and, signal processing, 975–979 1997Google Scholar
  22. 22.
    Potlapalli H, Luo RC (1998) Fractal-based classification of natural textures. IEEE Trans Industr Electron 45:142–150CrossRefGoogle Scholar
  23. 23.
    Lance EE, Kaplan M (1999) Extended fractal analysis for texture classification and segmentation. IEEE Trans Image Process 8:1572–1585CrossRefGoogle Scholar
  24. 24.
    Novianto S, Suzuki Y, Maeda J (2003) Near optimum estimation of local fractal dimension for image segmentation. Pattern Recogn Lett 24:365–374CrossRefGoogle Scholar
  25. 25.
    Matsumoto H, Sasazaki K (2008) Color image compression with vector quantization. In: IEEE conference on soft computing in industrial applications, 84–88 2008Google Scholar
  26. 26.
    Sarkar N, Chaudhuri BB (1992) An efficient approach to estimate fractal dimension of textural images. Pattern Recogn 25:1035–1041Google Scholar
  27. 27.
    Sarkar N, Chaudhuri BB (1994) An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans Syst Man Cybern B Cybern 24:115–120CrossRefGoogle Scholar
  28. 28.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern B Cybern 9:62–66CrossRefGoogle Scholar
  29. 29.
    Wang Z, Bovik C, Sheikh H, Simoncelli P (2004) Image quality assessment: from error measurement to structural similarity. IEEE Trans Image Process 13:600–612CrossRefGoogle Scholar
  30. 30.
    Zhang X, Wandell BA (1996) A spatial extension of CIELAB for digital color image reproduction. In: The SID symposium technical digest, 27, 731–734 1996Google Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Department of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations