Hierarchical Clustering Algorithm for Intensity Based Cluster Merging and Edge Detection in Medical Images

  • R. Harikumar
  • B. Vinoth Kumar
  • G. Karthick
  • L. K. Chand
  • C. Navin Kumar
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 221)

Abstract

Edge detection in medical images is an intrinsic difficult problem as the gray value intensity images may show different edges through Improved Mountain Clustering based medical image. We present a clustering based indexing technique, where the images in the database are grouped into clusters of images with similar color content using a hierarchical clustering algorithm. An initial comparative study of various medical datasets shows the differences and properties of these approaches and makes clear that the proposal has interesting properties.

Keywords

Hierarchical clustering Edge detection Cluster merging Canny edge detector 

Notes

Acknowledgments

The authors express their sincere thanks to the Management and the Principal of Bannari Amman Institute of Technology, Sathyamangalam for providing the necessary facilities for the completion of this paper.

References

  1. 1.
    Swain MJ, Ballard DH (1991) Color indexing. Intl J Comput Vision 7(1):11–32CrossRefGoogle Scholar
  2. 2.
    Robinson GS (1977) Colour edge detection. Opt Eng 16(5):479–484CrossRefGoogle Scholar
  3. 3.
    Di Zenzo S (1986) A note on the gradient of a multiimage. Comput Vision Graph Image Process 33(116–125):1986Google Scholar
  4. 4.
    Trahanias PW, Venetsanopoulos AN (1993) Colour edge detection using vector statistics. IEEE Trans Image Process 2:259–264CrossRefGoogle Scholar
  5. 5.
    Cumani A (1991) Edge detection in multispectral images. Graph Models Image Process 53:40–51MATHCrossRefGoogle Scholar
  6. 6.
    Chapron M (2000) A color edge detector based on statistical rupture tests. IEEE Int Conf Image Process II:820–823Google Scholar
  7. 7.
    Lambert P (1993) Using eigenvectors of a vector field for deriving a second directional derivative operator for color images. Int Conf Comput Anal Images Patterns 719:149–156CrossRefGoogle Scholar
  8. 8.
    Koschan A, Abidi M (2005) Detection and classification of edges in colour images. Signal Process Magazine Special Issue Color Image Process 22:67–73Google Scholar
  9. 9.
    Barnett V (1976) The ordering of multivariate data. J Royal Statist 139(3):318–343CrossRefGoogle Scholar
  10. 10.
    Huntsberger TL, Descalzi MF (1985) Color edge detection. Pattern Recogn Lett 3:205–209Google Scholar
  11. 11.
    Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698CrossRefGoogle Scholar
  12. 12.
    Marr D, Hildreth E (1980) Theory of edge detection. In: Proceedings of royal society of London, pp 187–217Google Scholar
  13. 13.
    Paclik P, Duin RPW, van Kempen GMP, Kohlus R (2005) Segmentation of multi-spectral images using the combined classifier approach. Image Vision Comput J 21:473–482CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • R. Harikumar
    • 1
  • B. Vinoth Kumar
    • 2
  • G. Karthick
    • 3
  • L. K. Chand
    • 3
  • C. Navin Kumar
    • 3
  1. 1.Professor, ECEBannari Amman Institute of TechnologySathyamangalamIndia
  2. 2.Assistant Professor, EEEBannari Amman Institute of TechnologySathyamangalamIndia
  3. 3.UG Student, ECEBannari Amman Institute of TechnologySathyamangalamIndia

Personalised recommendations