Skip to main content

Biofuels: The Environment-Friendly Energy Carriers

  • Chapter
  • First Online:
Biotechnology for Environmental Management and Resource Recovery

Abstract

Escalating globalisation, high demand for energy, increasing greenhouse gas emissions and depleting fossil fuel reserves have necessitated the search for alternative and sustainable energy carriers such as biofuels. Worldwide, the laboratories are engaged in extensive research for the development of different biofuels such as bioethanol, biodiesel, biohydrogen, biogas and advanced bioalcohols. This chapter provides an overview of bioprocessing of various types of biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbi M, Kuhad RC, Singh A (1996a) Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): fermentation behavior. Process Biochem 31:555–560

    Article  CAS  Google Scholar 

  • Abbi M, Kuhad RC, Singh A (1996b) Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. J Ind Microbiol 17:20–23

    Article  PubMed  CAS  Google Scholar 

  • Abdenifar S, Karimi K, Khanahmadi M, Taherzadeh MJ (2009) Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation. Biomass Bioenergy 33:828–833

    Article  CAS  Google Scholar 

  • Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory Technical Report. NREL/TP-510-32438

    Google Scholar 

  • Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio M (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42

    Article  PubMed  CAS  Google Scholar 

  • Alfani A, Gallifuoco F, Saporosi A, Cantarella M (2000) Comparison of SHF and SSF process for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 25:84–192

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  PubMed  CAS  Google Scholar 

  • Asgari MJ, Safavi K, Mortazaeinezahad F (2011) Landfill biogas production process. In: International conference on food engineering and biotechnology. IPCBEE, vol 9. IACSIT Press, Singapore. http://www.ipcbee.com/vol9/40-B10035.pdf

  • Atsumi S, Liao J (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Katherine JY, Chou-Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848

    Article  CAS  Google Scholar 

  • Belloch C, Orlic S, Barrio E, Querol A (2008) Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol 122:188–195

    Article  PubMed  CAS  Google Scholar 

  • Bender M (1999) Economic feasibility review for community-scale farmer cooperatives for biodiesel. Bioresour Technol 70:81–87

    Article  CAS  Google Scholar 

  • Benemann JR (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  PubMed  CAS  Google Scholar 

  • EBTP (European Biofuels Technology Platform) (2010) Biofuel production. www.biofuelstp.eu/fuelproduction.html

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  PubMed  CAS  Google Scholar 

  • Bothast RJ, Saha BC, Flosenzier VA, Ingram LO (1994) Fermentation of l-arabinose, d-xylose, and d-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnol Lett 16:401–406

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Burdette DS, Vieille C, Zeikus JG (1996) Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem J 316:115–122

    PubMed  CAS  Google Scholar 

  • Carraretto C, Macor A, Mirandola A, Stoppato A, Tonon S (2004) Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy 29:2195–2211

    Article  CAS  Google Scholar 

  • Chaillou S, Pouwels PH, Postma PW (1999) Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus plantarum: evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate: mannose phosphotransferase system. J Bacteriol 181:4768–4773

    PubMed  CAS  Google Scholar 

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    Article  PubMed  CAS  Google Scholar 

  • Chauvatcharin S, Siripatana C, Seki T, Takagi M, Yoshida T (1998) Metabolism analysis and on-line physiological state diagnosis of acetone-butanol fermentation. Biotechnol Bioeng 58:561–571

    Article  PubMed  CAS  Google Scholar 

  • Chen J (1995) Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol Rev 17:263–273

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Xia L, Xue P (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeter Biodegr 59:85–89

    Article  CAS  Google Scholar 

  • Cheng C, Chung Y, Lee S, Lee DJ, Lin CY, Chang SJ (2011) Biohydrogen production from lignocellulosic feedstock. Bioresour Technol 102:8514–8523

    Article  PubMed  CAS  Google Scholar 

  • Chidambaram M, Bell AT (2010) A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids. Green Chem 12(7):1253–1262

    Article  CAS  Google Scholar 

  • Chou Y-C, Zhang M, Mohagheghi A, Evans K, Finkelstein M (1997) Construction and evaluation of a xylose/arabinose fermenting strain of Zymomonas mobilis. Abstracts in 19th symposium on biotechnology for fuels and chemicals, Colorado, Springs, 4–8 May

    Google Scholar 

  • Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8

    Article  CAS  Google Scholar 

  • Das D, Kanna N, Veziroglu TN (2008) Recent developments in biological hydrogen production processes. Chem Ind Chem Eng Q 14:57–67

    Article  CAS  Google Scholar 

  • Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manage 44:2093–2109

    Article  CAS  Google Scholar 

  • Demirbas A (2006) Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Convers Manage 47:2271–2282

    Article  CAS  Google Scholar 

  • Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35:4661–4670

    Article  Google Scholar 

  • Demirbas A (2008) Biomethanol production from organic waste materials. Energy Source A 30:565–572

    Article  CAS  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–170

    Article  Google Scholar 

  • Demirbas A, Gulu D (1998) Acetic acid, methanol and acetone from lignocellulosics by pyrolysis. Energy Educ Sci Technol 1:111–115

    CAS  Google Scholar 

  • Deshpande V, Keskar S, Mishra C, Rao M (1986) Direct conversion of cellulose/hemicellulose to ethanol by Neuro­spora crassa. Enzyme Microb Technol 8:149–152

    Article  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Google Scholar 

  • Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84:181–196

    Article  PubMed  Google Scholar 

  • Doi T, Matsumoto H, Abe J, Morita S (2010) Application of rice rhizosphere microflora for hydrogen production from apple pomace. Int J Hydrogen Energy 35:7369–7376

    Article  CAS  Google Scholar 

  • EIA (2009) Energy Information Administration, Assum­ptions to the annual energy outlook 2009, DOE/EIA-0554. http://www.eia.doe.gov/oiaf/aeo/assumption, www.eia.doe.gov/oiaf/aeo/assumption

    Article  PubMed  CAS  Google Scholar 

  • El Kanouni A, Zerdani I, Zaafa S, Znassni M, Loutfi M, Boudouma M (1998) The improvement of glucose/xylose fermentation by Clostridium acetobutylicum using calcium carbonate. World J Microbiol Biotechnol 14:431–435

    Article  CAS  Google Scholar 

  • Elbahloul Y, Steinbohel A (2010) Pilot-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p(Microdiesel) plasmid. Appl Environ Microbiol 76:4560–4565

    Article  PubMed  CAS  Google Scholar 

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Article  PubMed  CAS  Google Scholar 

  • Ennis BM, Qureshi N, Maddox IS (1987) Inline toxic product removal during solvent production by continuous fermentation using immobilized Clostridium acetobutylicum. Enzyme Microb Technol 9:672–675

    Article  CAS  Google Scholar 

  • Eroglu E, Eroglu I, Gunduz U, Turker L, Yucel M (2006) Biological hydrogen production from olive mill wastewater with two stage processes. Int J Hydrogen Energy 31:1527–1535

    Article  CAS  Google Scholar 

  • Fan YT, Zhang YH, Zhang SF, Hou HW, Ren BZ (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505

    Article  PubMed  CAS  Google Scholar 

  • Fascetti E, Todini O (1995) Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat. Appl Microbiol Biotechnol 22:300–305

    Article  Google Scholar 

  • Federov AS, Tsygankov AA, Rao KK, Hall DO (1998) Hydrogen photoproduction by Rhodobacter sphaeroides immobilized on polyurethane foam. Biotechnol Lett 20:1007–1009

    Article  Google Scholar 

  • Ferchichi M, Crabbe E, Gwang GH, Hintz W, Almadidy A (2005) Influence of initial pH on hydrogen production from cheese whey. J Biotechnol 120:402–409

    Article  PubMed  CAS  Google Scholar 

  • Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol 63:2306–2310

    PubMed  CAS  Google Scholar 

  • Frac M, Jezierska-Tys S, Tys J (2010) Microalgae for biofuels production and environmental applications: a review. Afr J Biotechnol 9:9227–9236

    Google Scholar 

  • Frigon JC, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels Bioprod Biorefin 4(4):447–458

    Article  CAS  Google Scholar 

  • Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87:297–308

    Article  Google Scholar 

  • Gerhard K (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373

    Article  CAS  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable hydrogen. TIBTECH 18:506–511

    Article  CAS  Google Scholar 

  • Goering E, Schwab W, Daugherty J, Pryde H, Heakin J (1982) Fuel properties of eleven vegetable oils. Trans ASAE 25:1472–1483

    CAS  Google Scholar 

  • Gruter G, Manzer LE, De Sousa Dias ASV, Dautzenberg F, Purmova J (2009) Hydroxymethyl furfural ethers and esters prepared in ionic liquids. WO2009/030512

    Google Scholar 

  • Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100:1214–1220

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Khasa YP, Kuhad RC (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym 84:1103–1109

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  CAS  Google Scholar 

  • Hamelinck CN (2004) Outlook for advanced biofuels. PhD thesis, Department of Science, Technology and Society and the Copernicus Institute for Sustainable Development and Innovation of Utrecht University

    Google Scholar 

  • Hanai T, Atsumi S, Liao J (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7820

    Article  PubMed  CAS  Google Scholar 

  • Herrero A, Gomez RF (1980) Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 40:571–577

    PubMed  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Google Scholar 

  • Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    PubMed  CAS  Google Scholar 

  • Hu CK, Bai FW, An LJ (2005) Effect of flocculence of a self-flocculating yeast on its tolerance to ethanol and the mechanism. Chin J Biotechnol 21:123–128

    CAS  Google Scholar 

  • Hu J, Wang YC, Chunshe E, Douglas CS, Don J, White JF (2005) Conversion of biomass syngas to DME using a microchannel reactor. Ind Eng Chem Res 44:1722–1727

    Article  CAS  Google Scholar 

  • Idania VV, Richard S, Derek R, Noemi RS, Hector MPV (2005) Hydrogen generation via anaerobic fermentation of paper mill wastes. Bioresour Technol 96:1907–1913

    Article  CAS  Google Scholar 

  • Imkamp F, Muller V (2007) Acetogenic bacteria. Encyclopedia of life sciences. Wiley, Malden

    Google Scholar 

  • Ingram LO, Aldrich HC, Borges AC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano IP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  PubMed  CAS  Google Scholar 

  • Inokuma K, Liao JC, Okamoto M, Hanai T (2010) Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J Biosci Bioeng 110:696–701

    Article  PubMed  CAS  Google Scholar 

  • James OO, Maity S, Usman LA et al (2010) Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural. Energy Environ Sci 3:1833–1852

    Article  CAS  Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TW, Jin Y-S (2004) Ethanol and thermo-tolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–266

    Article  Google Scholar 

  • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609

    Article  PubMed  CAS  Google Scholar 

  • Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3:167–175

    Article  PubMed  CAS  Google Scholar 

  • Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF (2006) The expression of a Pichia stipitis xylose reductase mutant with higher Km for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93:665–673

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Cheng Y-F, Mao S-Y, Zhu W-Y (2011) Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresour Technol 102:7925–7931

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67:4249–4255

    Article  PubMed  CAS  Google Scholar 

  • Jojima T, Inui M, Yukawa H (2008) Production of isopropanol by metabolically engineered Escherichia coli. Appl Environ Microbiol 77:1219–1224

    CAS  Google Scholar 

  • Kadam PC, Godbole SH, Renade DR (1989) Isolation of methanogens from Arbian sea sediments and their salt tolerance. FEMS Microbiol Ecol 62:434

    Google Scholar 

  • Kalscheuer R, Stoting T, Steinbohel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  PubMed  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    Article  PubMed  CAS  Google Scholar 

  • Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 73:1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Keinan E, Hafeli E, Seth K, Lamed R (1986) Thermostable enzymes in organic synthesis. 2. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii. J Am Chem Soc 108:162–169

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A (2010a) Bioethanol production from Lantana camara (Red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101:8348–8354

    Article  PubMed  CAS  Google Scholar 

  • Kuhad RC, Mehta G, Gupta R, Sharma KK (2010b) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34:1189–1194

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP (2011) Bioethanol production from lignocellulosics: an overview. In: Lal B, Sharma PM (eds) Wealth from waste, 3rd edn. TERI Press, New Delhi

    Google Scholar 

  • Kuijvenhoven J (2006) Process design for an integrated lignocellulose to bioethanol production plant presentation at Netherlands Process Technology Symposium, 25 October 2006

    Google Scholar 

  • Kumar N, Das D (1999) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35:589–594

    Article  Google Scholar 

  • Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Proc Biochem 35:589–593

    Google Scholar 

  • Kumar N, Das D (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29:280–287

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Kuyper M, Winkler AA, Dijken JPV, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermen­tation: a proof of principle. FEMS Yeast Res 4:655–664

    Article  PubMed  CAS  Google Scholar 

  • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, Dijken JPV (2005) Metabolic engineering of a xylose–isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409

    Article  PubMed  CAS  Google Scholar 

  • Lee WG, Lee JS, Shin CS, Park SC, Chang HN, Chang YK (1999) Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Appl Biochem Biotechnol 78:547–559

    Article  Google Scholar 

  • Lee GSJ, McCain JH, Bhasin MM (2003) Synthetic organic chemicals. In: Kent JA (ed) Riegel’s handbook of industrial chemistry, 10th edn. Kluwer Academic/Plenum Publishers, New York, pp 851–854

    Google Scholar 

  • Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical muta­genesis and evolutionary adaptation. Biochem Eng J 48:204–210

    Article  CAS  Google Scholar 

  • Liu IC, Whang LM, Ren WJ, Lin PY (2011) The effect of pH on the production of biohydrogen by Clostridia: thermodynamic and metabolic considerations. Int J Hydrogen Energy 36:439–449

    Article  CAS  Google Scholar 

  • Logan BE (2004) Feature article: biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells. Environ Sci Technol 38:160A–167A

    Article  PubMed  CAS  Google Scholar 

  • Londo HM, Lensink SM, Deurwaarder EP, Wakker A, de Wit MP, Junginger HM, Könighofer K, Jungmeier G (2008) Biofuels development in the EU27+ until 2030: full-chain cost assessment and implications of policy options REFUEL project, WP4 final report

    Google Scholar 

  • Lovett JC, Hards S, Clancya J, Snell C (2011) Multiple objectives in biofuels sustainability policy. Energy Environ Sci 4:261–268

    Google Scholar 

  • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Makaruk A, Miltner M, Harasek M (2010) Membrane biogas upgrading processes for the production of natural gas substitute. Sep Purif Technol 74(2010):83–92

    Article  CAS  Google Scholar 

  • Maki-Arvela P, Salminen E, Riittonen T, Virtanen P, Kumar N, Mikkola J (2012) The challenge of efficient synthesis of biofuels from lignocellulose for future renewable transportation fuels. Int J Chem Eng. doi:10.1155/2012/674761

    Google Scholar 

  • Mamma D, Christakopoulos P, Koullas D, Kekos D, Macris BJ, Koukios E (1995) An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol. Biomass Bioenergy 8:99–103

    Article  CAS  Google Scholar 

  • Mao H-L, Wang J-K, Zhou Y-Y, Liu J-X (2010) Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livest Sci 129:56–62

    Article  Google Scholar 

  • Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustain Energy Rev 11:1300–1311

    Article  CAS  Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  PubMed  CAS  Google Scholar 

  • Mata TM, Martins AA, Nidia S (2010) Caetano, microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S (2008) Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase and xylulokinase. J Biosci Bioeng 105:296–299

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–136

    Article  PubMed  CAS  Google Scholar 

  • Millati R, Edebo L, Taherzadeh MJ (2005) Performance of Rhizopus, Rhizomucor and Mucor in ethanol production from glucose, xylose and wood hydrolysates. Enzyme Microb Technol 36:294–300

    Article  CAS  Google Scholar 

  • Miltner M, Makaruk A, Krischan J, Harasek M (2012) Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: potentials and economics. Water Sci Technol 66(6):1354–1360

    Article  PubMed  CAS  Google Scholar 

  • Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch MR (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Mountfort DO, Rhodes LL (1991) Anaerobic Growth and fermentation characteristics of Paecilomyces lilacinus isolated from Mullet gut. Appl Environ Microbiol 57:1963–1968

    PubMed  CAS  Google Scholar 

  • Nagel N, Lemke P (1990) Production of methyl fuel from microalgae. Appl Biochem Biotechnol 24:355–361

    Article  Google Scholar 

  • Nallathambi GV (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114

    Article  Google Scholar 

  • Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone–butanol–ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83:415–423

    Google Scholar 

  • Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Ohgren K, Bura R, Lesnicki G, Saddler J, Zacchi G (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839

    Article  CAS  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    PubMed  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: inhibition and detoxification. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Pandu K, Joseph S (2012) Comparisons and limitations of biohydrogen production processes: a review. Int J Adv Eng Technol 2:342–356

    Google Scholar 

  • Patel GB (1984) Ethanol production during o-xylose, L-arabinose, and D-ribose fermentation by Bacteroides polypragmatus. Appl Microbiol Biotechnol 20:111–117

    Article  CAS  Google Scholar 

  • Petersson A, Wellinger A (2009) Biogas upgrading technologies – developments and innovations. http://www.ieabiogas.net/Dokumente/upgrading_rz_low_final.pdf

  • Phillips VD, Kinoshita CM, Neill DR, Takashi PK (1990) Thermochemical production of methanol from biomass in Hawaii. Appl Energy 35:167–175

    Article  CAS  Google Scholar 

  • Pryor RW, Hanna MA, Schinstock JL, Bashford LL (1982) Soybean oil fuel in a small diesel engine. Trans ASAE 26:333–338

    Google Scholar 

  • Qureshi N, Blaschek HP (2001) Recovery of butanol from fermentation broth by gas stripping. Renew Energy 22:557–564

    Article  CAS  Google Scholar 

  • Qureshi N, Maddoxm IS (1991) Integration of continuous production and recovery of solvents from whey permeate: use of immobilized cells of Clostridium acetobutylicum in a fluidized bed reactor coupled with gas stripping. Bioprocess Eng 6:63–69

    Article  Google Scholar 

  • Ramachandriya KD, Wilkins MR, Delorme MJM, Zhu X, Kundiyana DK, Atiyeh HK, Huhnke RL (2011) Reduction of acetone to isopropanol using producer gas fermenting microbes. Biotechnol Bioeng 108:2330–2338

    Article  CAS  Google Scholar 

  • Ramey D, Yang ST (2004) Production of butyric acid and butanol from biomass. U.S. Department of Energy Morgantown, WV. http://www.afdc.energy.gov/pdfs/843183.pdf

  • Ras S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. J Energy 32:1375–1380

    Article  CAS  Google Scholar 

  • Raven RPJM, Gregersen KH (2007) Biogas plants in Denmark: successes and setbacks. Renew Sustain Energy Rev 11:116–132

    Article  Google Scholar 

  • Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149–185

    Article  CAS  Google Scholar 

  • Reed TB, Lerner RM (1973) Methanol: a versatile fuel for immediate use. Science 182:1299–1304

    Article  PubMed  CAS  Google Scholar 

  • Rocha MVP, Rodrigues TH, de Macedo GR, Gonçalves LR (2009) Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric acid for bioethanol production. Appl Biochem Biotechnol 155:407–417

    Article  PubMed  CAS  Google Scholar 

  • Roukas T, Kotzekidou P (1998) Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fed-batch culture. Enzyme Microb Technol 22:199–204

    Article  CAS  Google Scholar 

  • Runquist D, Hahn-Hägerdal B, Bettiga M (2009) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Fact 8:49

    Article  PubMed  CAS  Google Scholar 

  • Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645

    Article  CAS  Google Scholar 

  • Sathish A, Sims RC (2012) Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour Technol 118:643–647

    Article  PubMed  CAS  Google Scholar 

  • Schnackenberg J, Ikemoto H, Miyachi S (1996) Photo­synthesis and hydrogen evolution under stress conditions in a CO2-tolerant marine green alga, Chlorococcum littorale. J Photochem Photobiol B Biol 34(1):59–62

    Article  CAS  Google Scholar 

  • Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion of n-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3:89–92

    Article  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, ­Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  PubMed  CAS  Google Scholar 

  • Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sources 156:497–511

    Article  CAS  Google Scholar 

  • Sheehan J, Cambreco V, Duffield J, Garboski M, Shapouri H (1998) An overview of biodiesel and petroleum diesel life cycles. A report by US Department of Agriculture and Energy, pp 1–35

    Google Scholar 

  • Shi NQ, Davis B, Sherman F, Cruz J, Jeffries TW (1999) Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15:1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Shi NQ, Cruz J, Sherman F, Jeffries TW (2002) SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast 19:1203–1220

    Article  PubMed  CAS  Google Scholar 

  • Simankova MV, Kotsyurbenko OR, Lueders T, Nozhevnikova AN, Wagner B, Conrad R, Friedrich MW (2003) Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26:312–318

    Article  PubMed  Google Scholar 

  • Singh A, Mishra P (1993) Microbial production of ethanol in: microbial pentose utilization: current application in biotechnology. Prog Ind Microbiol 33:147–196

    Google Scholar 

  • Smith GD, Ewart GD, Tucker W (1992) Hydrogen production by cyanobacteria. Int J Hydrogen Energy 17:695–698

    Article  CAS  Google Scholar 

  • Soderstrom J, Galbe M, Zacchi G (2005) Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production. J Wood Chem Technol 25:187–202

    Article  CAS  Google Scholar 

  • Sreenath HK, Koegel RG, Moldes AB, Jeffries TW, Straub RJ (1999) Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment. Process Biochem 35:33–41

    Article  CAS  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A et al (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  PubMed  CAS  Google Scholar 

  • Stelmachowski M, Nowicki L (2003) Fuel from the synthesis gas – the role of process engineering. Applied Energy 74:85–93

    Article  CAS  Google Scholar 

  • Su H, Cheng J, Zhou J, Song W, Cen K (2009) Combination of dark and photo-fermentation to enhance production and energy conversion efficiency. Int J Hydrogen Energy 34:8846–8853

    Article  CAS  Google Scholar 

  • Su H, Cheng J, Zhou J, Song W, Cen K (2010) Hydrogen production from water hyacinth through dark and photo-fermentation. Int J Hydrogen Energy 35:8929–8937

    Article  CAS  Google Scholar 

  • Survase SA, Jurgens G, van Heiningen A, Granström T (2011) Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 91:1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147:297–301

    Article  CAS  Google Scholar 

  • Swaina PK, Dasa LM, Naik SN (2011) Biomass to liquid: a prospective to challenge research and development in 21st century. Renew Sustain Energy Rev 15:4917–4933

    Article  CAS  Google Scholar 

  • Talebnia F, Pourbafrani M, Lundin M, Taherzadeh MJ (2008) Optimization study of citrus wastes saccharification by dilute acid hydrolysis. BioResour 3:108–122

    CAS  Google Scholar 

  • Tang G, Huang J, Sun Z, Tang Q, Yan C, Liu G (2008) Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 106:80–87

    Article  PubMed  CAS  Google Scholar 

  • Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S (2005) Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol 123–124:403–419

    Article  CAS  Google Scholar 

  • Vandeska E, Amartey S, Kuzmanova S, Jeffries TW (1996) Fed-batch culture for xylitol production by Candida boidinii. Process Biochem 31:265–270

    Article  CAS  Google Scholar 

  • Verho R, Londesborough J, Penttila M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69:5892–5897

    Article  PubMed  CAS  Google Scholar 

  • Wahlbom F, Otero RRC, van Zyl WH, Hahn-Hägerdal B, Jonsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wan W (2008) Comparison of different pre-treatment methods for enriching hydrogen producing cultures from digested sludge. Int J Hydrogen Energy 33:2934–2941

    Article  CAS  Google Scholar 

  • Wang CC, Chang CW, Chu CP, Lee DJ, Chang VV, Liao CS (2003) Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res 37:2789–2793

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Xu Y, Zhao G (2004) Fermentation kinetics of different sugars by apple wine yeast Saccharomyces cerevisiae. J Inst Brew 110:340–346

    Article  CAS  Google Scholar 

  • Wang YY, Ai P, Hu CX, Zhang YL (2011) Effects of various pretreatment methods of anaerobic mixed microflora on biohydrogen production and the fermentation pathway of glucose. Int Hydrogen Energy 36:390–396

    Article  CAS  Google Scholar 

  • Wellinger A, Lindberg A (1999) Biogas upgrading and utilization. IEA Bioenergy. Task 24: energy from ­biological conversion of organic waste. http://www.energietech.info/pdfs/Biogas_upgrading.pdf

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  PubMed  CAS  Google Scholar 

  • Wright SJL, Linton CJ, Edwards RA, Drur E (1991) Isoamyl alcohol (3-methyl-l-butanol), a volatile anti-cyanobacterial and phytotoxic product of some Bacillus spp. Lett Appl Microbiol 1991(13):130–132

    Article  Google Scholar 

  • Xia LM, Sheng XL (2004) High-yield cellulase production by Trichoderma reesei in ZU-02 on corncob residues. Bioresour Technol 91:259–262

    Article  CAS  Google Scholar 

  • Xing D, Ren N, Rittmann BE (2008) Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene. Appl Environ Microbiol 74(4):1232–1239

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Li Z, Fan Y, Huo H (2010) Biohydrogen production from dairy manures with acidification pre-treatment by anaerobic fermentation. Environ Sci Pollut Res 17:392–399

    Article  CAS  Google Scholar 

  • Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo1 AV, Rodriguez M Jr, Brown SD (2009) Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BioMed Cent Genomics. doi:10.1186/1471-2164-10-34

    Google Scholar 

  • Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy 22:389–395

    Article  CAS  Google Scholar 

  • Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74:474–483

    Google Scholar 

  • Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132–138

    Article  PubMed  CAS  Google Scholar 

  • Zabut B, El-Kahlout K, Yucel M, Gunduz U, Turker I, Eroglu I (2006) Hydrogen gas production by combined systems of Rhodobacter sphaeroides O.U.001 and Halobacterium salinarum in a photobioreactor. Int J Hydrogen Energy 31:1553–1562

    Article  CAS  Google Scholar 

  • Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Boas SG, Nielsen J, Olsson L (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:436–442

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Xia L (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem Eng J 49:28–32

    Article  CAS  Google Scholar 

  • Zhao QB, Yu HQ (2008) Fermentative H2 production in an up-flow anaerobic sludge blanket reactor at various pH values. Bioresour Technol 99:1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Zinoviev S, Moler-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M et al (2010) Next-generation bio­fuels: survey of emerging technologies and ­sustainability issues. ChemSus Chem 3:1106–1133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Gupta, R. et al. (2013). Biofuels: The Environment-Friendly Energy Carriers. In: Kuhad, R., Singh, A. (eds) Biotechnology for Environmental Management and Resource Recovery. Springer, India. https://doi.org/10.1007/978-81-322-0876-1_8

Download citation

Publish with us

Policies and ethics