Skip to main content

Microorganisms and Enzymes Involved in Lignin Degradation Vis-à-vis Production of Nutritionally Rich Animal Feed: An Overview

  • Chapter
  • First Online:

Abstract

Lignocellulosics are the major structural component of woody and nonwoody plants and represent a major source of renewable organic matter. The plant cell wall consists of three major polymers: cellulose, hemicellulose, and lignin. Lignocellulose biomass, available in huge quantity, has attracted considerable attention as an alternate resource for pulp and paper, fuel alcohol, chemicals, and protein for food and feed using microbial bioconversion processes. The current industrial activity of lignocellulosic fermentation is limited because of the difficulty in economic bioconversion of these materials to value-added products. Lignin is degraded to different extents by variety of microorganisms including bacteria, actinomycetes, and fungi, of which wood-rotting fungi are the most effective, white-rot fungi in particular. White-rot fungi degrade wood by a simultaneous attack on the lignin, cellulose, and hemicellulose, but few of them are specific lignin degraders. The selective lignin degraders hold a potential role in economically bioconversion of plant residues into cellulose-rich materials for subsequent bioethanol and animal feed production. Different fungi adapt in accordance to conditions existing in the ecosystem and complete their task of carbon recycling of the lignified tissues, and some white-rot fungi have capability to completely mineralize it. It is known that white-rot fungi are able to perform lignin degradation by an array of extracellular oxidative enzymes, the best characterized of which are lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase. However, the regulation of the production of individual enzymes and lignin degradation is a complex phenomenon. Unfortunately, even selected white-rot fungi take long in delignifying the lignocellulosic substrates. Therefore, it is necessary to improve these fungi for their ability to degrade lignin through various conventional and modern approaches. A considerable progress has been made in this direction during the past two decades; LiP, MnP, and laccase genes have been cloned, and an efficient Agrobacterium-mediated transformation system has been developed, which will eventually help in successful expression of the desired protein. This chapter presents an overview of diversity of lignin-degrading microorganisms and their enzymes especially in developing animal feed. In addition to that, advances in molecular approaches to enhance the delignification capability of microorganisms are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah N, Khan AD, Ejaz N (2004) Influence of nutrients carbon and nitrogen supplementation on biodegradation of wheat straw by Trametes versicolor. Mycol Appl Int 16:7–12

    Google Scholar 

  • Adamovic M, Grubic G, Milenkovic I, Jovanovic R, Protic R, Sretenovic L, Stoicevic L (1998) The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle feeding. Anim Feed Sci Technol 71:357–362

    Article  Google Scholar 

  • Adhi TP, Korus RA, Crawford DL (1989) Production of major extracellular enzymes during lignocellulose degradation by two Streptomyces in agitated submerged culture. Appl Environ Microbiol 55:1165–1168

    PubMed  CAS  Google Scholar 

  • Aggelis G, Ehaliotis C, Nerud F, Stoychev I, Lyberatos G, Zervakis G (2002) Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Appl Microbiol Biotechnol 59:353–360

    Article  PubMed  CAS  Google Scholar 

  • Agosin E, Monties B, Odier E (1985) Structural changes in wheat straw components during decay by lignin-degrading white-rot fungi in relation to improvement of digestibility for ruminants. J Sci Food Agric 36:925–935

    Article  CAS  Google Scholar 

  • Aguirre F, Maldonado O, Rolz C, Menchu JF, Espinosa R, de Cabrera S (1976) Protein from waste: growing fungi on coffee waste. Chem Technol 6:636–642

    CAS  Google Scholar 

  • Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GR, Bugg TDH (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol Biosyst 6:815–821

    Article  PubMed  CAS  Google Scholar 

  • Akhtar M, Blanchette RA, Kirk TK (1997) Fungal delignification and biomechanical pulping of wood. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 57. Springer, Berlin/Heidelberg, pp 159–195

    Google Scholar 

  • Akin DE (1993a) In: Shimada K, Ohmiya K, Kobayashi Y, Hoshino S, Sakka K, Karita S (eds) Genetics biochemistry and ecology of lignocellulose degradation. UNI, Tokyo, p 95

    Google Scholar 

  • Akin DE, Sethuraman A, Morrison WH III, Martin SA, Eriksson K-EL (1993b) Microbial delignification with white-rot fungi improves forage digestibility. Appl Environ Microbiol 61:1591–1598

    Google Scholar 

  • Akinyele BJ, Olaniyi OO, Arotupin DJ (2011) Bioconversion of selected agricultural wastes and associated enzymes by Volvariella volvacea: an edible mushroom. Res J Microbiol 6:63–70

    Article  CAS  Google Scholar 

  • Albores S, Pinazzola MJ, Soubes M, Cedeiras MP (2006) Biodegradation of agroindustrial wastes by Pleurotus sp. for its use as ruminant feed. Electron J Biotechnol 9:215–220

    Article  CAS  Google Scholar 

  • Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  PubMed  CAS  Google Scholar 

  • Alic M, Akileswaran L, Gold MH (1997) Characterization of the gene encoding manganese peroxidase isozyme 3 from Phanerochaete chrysosporium. Biochim Biophys Acta 1338:1–7

    Article  PubMed  CAS  Google Scholar 

  • Amitai G, Adani R, Sod-Moriah G, Rabinovitz I, Vincze A, Leader H, Chefetz B, Leibovitz-Persky L, Friesem D, Hadar Y (1998) Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett 438:195–200

    Article  PubMed  CAS  Google Scholar 

  • Ander P, Maezullo L (1997) Sugar oxidoreductases and veratryl alcohol oxidases as related to lignin degradation. J Biotechnol 53:115–131

    Article  PubMed  CAS  Google Scholar 

  • Archana PI, Mahadevan A (2002) Lignin degradation by bacteria. Prog Ind Microbiol 36:311–330

    Article  Google Scholar 

  • Arias ME, Arenas M, Rodriguez J, Soliveri J, Ball AS, Hernandez M (2003) Kraft pulp biobleaching and mediated oxidation of a non phenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69:1953–1958

    Article  PubMed  CAS  Google Scholar 

  • Arora DS, Gill PK (2001) Effects of various media and supplements on laccase production by some white rot fungi. Bioresour Technol 77:89–91

    Article  PubMed  CAS  Google Scholar 

  • Arora DS, Rampal P (2002) Laccase production by some Phlebia species. J Basic Microbiol 42:295–301

    Article  PubMed  CAS  Google Scholar 

  • Arora DS, Chander M, Gill PK (2002) Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int Biodeter Biodegr 50:115–120

    Article  CAS  Google Scholar 

  • Arora DS, Sharma RK, Chandra P (2011) Biodelignification of wheat straw and its effect on in vitro digestibility and antioxidant properties. Int Biodeter Biodegr 65:352–358

    Article  CAS  Google Scholar 

  • Asada Y, Watanabe A, Irie T, Nakayama T, Kuwahara M (1995) Structures of genomic and complementary DNAs coding for Pleurotus ostreatus manganese (II) peroxidase. Biochim Biophys Acta 1251:205–209

    Article  PubMed  Google Scholar 

  • Ball A, Betts W, McCarthy A (1989) Degradation of lignin-related compounds by Actinomycetes. Appl Environ Microbiol 55:1642–1644

    PubMed  CAS  Google Scholar 

  • Bals B, Murnen H, Allen M, Dale B (2010) Ammonia fiber expansion (AFEX) treatment of eleven different forages: improvements to fiber digestibility in vitro. Anim Feed Sci Technol 155:147–155

    Article  CAS  Google Scholar 

  • Bao WJ, Usha SN, Renganathan V (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 300:705–713

    Article  PubMed  CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white-rot fungi use to degrade pollutants. Environ Sci Technol 28:78–87

    Google Scholar 

  • Basu S, Gaur R, Gomes J, Sreekrishnan TR, Bisaria VS (2002) Effect of seed culture on solid state bioconversion of wheat straw by Phanerochaete chrysosporium for animal feed production. J Biosci Bioeng 1:25–30

    Google Scholar 

  • Belewu MA (2006) Conversion of masonia tree sawdust and cotton plant by product into feed by white rot fungus (Pleurotus sajor caju). Afr J Biotechnol 5:503–504

    CAS  Google Scholar 

  • Belyaeva ON, Haynes RJ (2009) Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash. Bioresour Technol 100:5203–5209

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar A, Kumar S, Gomes J (2008) Operating conditions of a 200 l staged vertical reactor for bioconversion of wheat straw by Phanerochaete chrysosporium. Bioresour Technol 99:6917–6927

    Article  PubMed  CAS  Google Scholar 

  • Black AK, Reddy CA (1991) Cloning and characterization of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochem Biophys Res Commun 179:428–435

    Article  PubMed  CAS  Google Scholar 

  • Blanchette RA (1995) Degradation of lignocellulose complex in wood. Can J Bot 73:S999–S1010

    Article  CAS  Google Scholar 

  • Blanchette RA, Abad AR, Farrell RL, Leathers TD (1989) Detection of lignin peroxidase and xylanase by immunocytochemical labeling in wood decayed by basidiomycetes. Appl Environ Microbiol 55:1457–1465

    PubMed  CAS  Google Scholar 

  • Blanchette RA, Burnes TA, Eerdmans MM, Akhtar M (1992) Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung 46:109–115

    Article  CAS  Google Scholar 

  • Boer CG, Obici L, de Souza CGM, Peralta RM (2006) Purification and some properties of Mn peroxidase from Lentinula edodes. Process Biochem 41:1203–1207

    Article  CAS  Google Scholar 

  • Bohlin C, Jönsson LJ, Roth R, Vanzyl WH (2006) Heterologous expression of Trametes versicolor laccase in Pichia pastoris and Aspergillus niger. Appl Biochem Biotechnol 129–132:195–214

    Article  PubMed  Google Scholar 

  • Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854

    PubMed  CAS  Google Scholar 

  • Bonnarme P, Jeffries TW (1990) Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl Environ Microbiol 56:210–217

    PubMed  CAS  Google Scholar 

  • Bonnen AM, Anton LH, Orth AB (1994) Lignin-degrading enzymes of the commercial button mushroom Agaricus bisporus. Appl Environ Mic­robiol 60:960–965

    PubMed  CAS  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian-derived fungi. Enzyme Microb Technol 46:32–37

    Article  CAS  Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  PubMed  CAS  Google Scholar 

  • Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Bornemann S (1996) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632

    Google Scholar 

  • Breccia JD, Bettucci L, Sineriz F (1997) Degradation of sugarcane bagasse by several white-rot fungi. Acta Biotechnol 17:177–184

    Article  CAS  Google Scholar 

  • Brown JA, Alic M, Gold MH (1991) Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J Bacteriol 173:4101–4106

    PubMed  CAS  Google Scholar 

  • Brune A (2007) Woodworker’s digest. Nature 450:487–488

    Article  PubMed  CAS  Google Scholar 

  • Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400

    Article  PubMed  CAS  Google Scholar 

  • Buswell JA, Odier E (1987) Lignin biodegradation. CRC Crit Rev Biotechnol 6:1–60

    Article  CAS  Google Scholar 

  • Call HP, Mucke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator systems (lignozyme(R)-process). J Biotechnol 53:163–202

    Article  CAS  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in natural degradation of lignin that has both Mn-peroxidase and lignin-peroxidase substrate binding sites. J Biol Chem 274:10324–10330

    Article  PubMed  CAS  Google Scholar 

  • Cambria MT, Cambria A, Ragusa S, Rizzarelli E (2000) Production, purification, and properties of an extracellular laccase from Rigidoporus lignosus. Protein Expr Purif 18:141–147

    Article  PubMed  CAS  Google Scholar 

  • Capeleri M, Zadrazil F (1997) Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi. Folia Microbiol 42:481–487

    Article  Google Scholar 

  • Cassland P, Jönssson LJ (1999) Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl Microbiol Biotechnol 52:393–400

    Article  PubMed  CAS  Google Scholar 

  • Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microbiol Technol 29:473–477

    Article  CAS  Google Scholar 

  • Chahal DS, Moo-Young M, Dhillon GS (1979) Biocon­version of wheat straw and wheat straw components into single-cell protein. Can J Microbiol 25:793–797

    Article  PubMed  CAS  Google Scholar 

  • Chandra R, Raj A, Purohit HJ, Kapley A (2007) Characterization and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67:839–846

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Fales SL, Varga GA, Royse DJ (1995) Biodegradation of cell wall components of maize stover colonized by white-rot fungi and resulting impact on in vitro digestibility. J Sci Food Agric 68:91–98

    Article  CAS  Google Scholar 

  • Chen S, Ge W, Buswell JA (2004) Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea. Europian. J Biochem 271:318–328

    CAS  Google Scholar 

  • Chesson A (1981) Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms. J Sci Food Agric 32:745–758

    Article  CAS  Google Scholar 

  • Chi Y, Hatakka A, Maijala P (2007) Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin degrading enzymes. Int Biodeter Biodegr 59:32–39

    Article  CAS  Google Scholar 

  • Chivukula M, Spadaro JT, Renganathan V (1995) Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34:7765–7772

    Article  PubMed  CAS  Google Scholar 

  • Choi GH, Larson TG, Nuss DL (1992) Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant Microbe Interact 5:119–128

    Article  PubMed  CAS  Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    PubMed  CAS  Google Scholar 

  • Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29:3–14

    Article  PubMed  CAS  Google Scholar 

  • Clutterbuck AJ (1972) Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J Gen Appl Microbiol 70:423–435

    Article  CAS  Google Scholar 

  • Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  CAS  Google Scholar 

  • Couto SR, Gundin M, Lorenzo M, Sanroman MN (2002) Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Process Biochem 38:249–255

    Article  CAS  Google Scholar 

  • Cowling EB (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. US Dep Agr Tech Bull 1258. US Department of Agriculture, Washington, DC, 79 p

    Google Scholar 

  • Cui F, Dolphin D (1990) The role of manganese in model systems related to lignin biodegradation. Holzforschung 44:279–283

    Article  CAS  Google Scholar 

  • Cullen D, Kersten P (1992) Fungal enzymes for lignocellulose degradation. In: Kinghorn JR, Turner G (eds) JR applied molecular genetics of filamentous fungi. Blackie Academic and Professional (Chapman & Hall), Glasgow, pp 100–131

    Chapter  Google Scholar 

  • Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzulf GA (eds) The Mycota III: biochemistry and molecular biology. Springer, Berlin, pp 249–273

    Chapter  Google Scholar 

  • D’Souza TM, Boominathan K, Reddy CA (1996) Isolation of lactase gene-specific sequences from white rot and brown rot fungi by PCR. Appl Environ Microbiol 62:3739–3744

    PubMed  Google Scholar 

  • D’Souza TM, Merritt CS, Reddy CA (1999) Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307–5313

    PubMed  Google Scholar 

  • Daniel GF, Nilsson T, Singh AP (1987) Degradation of lignocellulosics by unique tunnel-forming bacteria. Can J Microbiol 33:943–948

    Article  CAS  Google Scholar 

  • Das N, Chakraborty TK, Mukherjee M (1999) Role of potato extract in extracellular laccase production of Pleurotus florida. J Basic Microbiol 39:299–303

    Article  CAS  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595

    Article  PubMed  CAS  Google Scholar 

  • Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    PubMed  CAS  Google Scholar 

  • De Jong E, De Vries FP, Field JA, Van der Zwan RP, De Bont JAM (1992) Isolation and screening of basidiomycetes with high peroxidative activity. Mycol Res 96:1098–1104

    Article  Google Scholar 

  • Deacon JW (1997) Modern mycology, 3rd edn. Blackwell Scientific, Oxford

    Google Scholar 

  • Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072

    Article  PubMed  CAS  Google Scholar 

  • Dey S, Maiti TK, Bhattacharyya BC (1994) Production of some extracellular enzymes by a lignin peroxidase- producing brown-rot fungus, Polyporus osteiformis, and its comparative abilities for lignin degradation and dye decolorization. Appl Environ Microbiol 60:4216–4218

    PubMed  CAS  Google Scholar 

  • Dhawan S, Kuhad RC (2002) Effect of amino acids and vitamins on laccase production by the bird’s nest fungus Cyathus bulleri. Bioresour Technol 84:35–38

    Article  PubMed  CAS  Google Scholar 

  • Dhawan S, Lal R, Hanspal M, Kuhad RC (2004) Effect of antibiotics on growth and laccase production from Cyathus bulleri and Pycnoporus cinnabarinus. Bioresour Technol 96:1415–1418

    Article  CAS  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman and Hall, London

    Book  Google Scholar 

  • Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davie GJ (1998) Crystal structure of the pe-2 Cu depleted lactase from Coprinus cinereus at 2.2× resolution. Nat Struct Biol 5:310–316

    Article  PubMed  CAS  Google Scholar 

  • Duran N, Esposito E (2000) Potential application of oxidative enzymes and phenoloxidase like compounds in wastewater and soil treatment: a review. Appl Catal Environ 28:83–99

    Article  CAS  Google Scholar 

  • Edens WA, Goins TQ, Dooley D, Henson JM (1999) Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici. Appl Environ Microbiol 65:3071–3074

    PubMed  CAS  Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson K-EL (1996) A fungal metabolite mediates oxidation of non-phenolic lignin model compounds and synthetic lignin by laccase. FEBS Lett 391:144–148

    Article  PubMed  CAS  Google Scholar 

  • Eggert C, Lafayette PR, Temp U, Eriksson KEL, Dean JFD (1998) Molecular analysis of a laccase gene from white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 64:3151–3157

    Google Scholar 

  • Ek M, Eriksson K-E (1975) Conversion of cellulosic waste into protein. Appl Polym Symp 28:197–203

    CAS  Google Scholar 

  • Ek M, Eriksson K-E-L (1980) Utilization of the white-rot fungus Sporotrichum pulverulentum for water purification and protein production on mixed lignocellulosic wastewaters. Biotechnol Bioeng 22:2273–2284

    Article  CAS  Google Scholar 

  • Elisashvili V, Kachlishvili E, Penninckx M (2008) Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J Ind Microbiol Biotechnol 35:1531–1538

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Hayashi Y, Hibi T, Hosana K, Beppu T, Ueda K (2003a) Enzymological characterization of EpoA, a laccase like phenol oxidase produced by Streptomyces griseus. J Biochem 133:671–677

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Hosono K, Beppu T, Ueda K (2003b) A novel extracytoplasmic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis. Microbiology 148:1767–1776

    Google Scholar 

  • Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Fahr K, Wetzstein H-G, Grey R, Schlosser D (1999) Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175:127–132

    Article  PubMed  CAS  Google Scholar 

  • Fakoussa RM, Hofrichter M (1999) Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol 52:25–40

    Article  PubMed  CAS  Google Scholar 

  • Faraco V, Ercole C, Festa G, Giardina P, Piscitelli A, Sannia G (2008) Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis. Appl Microbiol Biotechnol 77:1329–1335

    Article  PubMed  CAS  Google Scholar 

  • Fenice M, Sermanni GG, Federici F, D’Annibale A (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol 100:77–85

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Esposito E, Duran N (1992) Lignin peroxidase from Chrysonilia sitophila: heat denaturation kinetics and pH stability. Enzyme Microb Technol 14:402–406

    Article  CAS  Google Scholar 

  • Flachowsky G, Kamra DN, Zadrazil F (1999) Cereal straws as animal feed-possibilities and limitations. J Appl Anim Res 16:105–118

    Article  Google Scholar 

  • Freeman IC, Nayar PG, Begley TP, Villafranca JJ (1993) Stoichiometry and spectroscopic identity of copper centers in phenoxazinone synthase: a new addition to the blue copper oxidase family. Biochemistry 32:4826–4830

    Article  PubMed  CAS  Google Scholar 

  • Galkin S, Vares T, Kalsi M, Hatakka A (1998) Production of organic acids by different white-rot fungi as detected using capillary zone electrophoresis. Biotechnol Tech 12:267–271

    Article  CAS  Google Scholar 

  • Galliano H, Gas G, Seris JL, Boudet AM (1991) Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb Technol 13:478–482

    Article  CAS  Google Scholar 

  • Garg SK, Neelakantan S (1982) Studies on the properties of cellulase enzyme from Aspergillus terreus, GNI. Biotechnol Bioeng 24:737–742

    Article  PubMed  CAS  Google Scholar 

  • Gaskell J, Stewart P, Kersten P, Covert S, Reiser J, Cullen D (1994) Establishment of genetic linkage by allele-specific polymerase chain reaction: application to the lignin peroxidase gene family of Phanerochaete chrysosporium. Bio/technology 12:1372–1375

    Article  PubMed  CAS  Google Scholar 

  • Gassara F, Brar SK, Tyagi RD, Verma M, Surampalli RY (2010) Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem Eng J 49:388–394

    Article  CAS  Google Scholar 

  • Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, del Mar Jimenez-Gasco M, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937

    Article  PubMed  CAS  Google Scholar 

  • Gelpke MDS, Mayfield M, Cereghino GPL, Gold MH (1999) Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 65:1670–1674

    Google Scholar 

  • Germann UA, Milller G, Hunziker PE, Lerch K (1988) Characterization of two allelic forms of Neurospora crassa laccase: amino- and carboxyl-terminal processing precursor. J Biol Chem 263:885–896

    PubMed  CAS  Google Scholar 

  • Ghosh A, Frankland JC, Thurston CF, Robinson CH (2003) Enzyme production by Mycena galopus mycelium in artificial media and in Picea sitchensis F1 horizon needle litter. Mycol Res 107:996–1008

    Article  PubMed  CAS  Google Scholar 

  • Gianfreda L, Sannino F, Filazzola MT, Leonowicz A (1998) Catalytic behavior and detoxifying ability of a laccase from the fungal strain Cerrena unicolor. J Mol Catal B Enzym 4:13–23

    Article  CAS  Google Scholar 

  • Giardina P, Cannio R, Martirani L, Marzullo L, Palmieri G, Sannia G (1995) Cloning and sequencing of a lactase gene from the lignin-degrading basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 61:2408–2413

    PubMed  CAS  Google Scholar 

  • Giardina P, Palmieri G, Scaloni A, Fontanella B, Farazo V, Cennamo G, Sannia G (1999) Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J 341:655–663

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson RL (1980) Wood rotting fungi of North America. Mycologica 72:1–49

    Article  Google Scholar 

  • Gill PK, Arora DS (2003) Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi. J Ind Microbiol Biotechnol 30:28–33

    PubMed  CAS  Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114:1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622

    PubMed  CAS  Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white-rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology, ACS Symp. Ser. No. 389. The American Chemical Society, Washington, DC, pp 128–140

    Google Scholar 

  • Grant GA, Han YM, Anderson AW (1978) Pilot-scale semi-solid fermentation of straw. Appl Environ Microbiol 35:549–553

    PubMed  CAS  Google Scholar 

  • Grey R, Hofer C, Schlosser D (1998) Degradation of 2-chlorophenol and formation of 2-chloro-1,4-benzoquinone by mycelia and cell-free crude culture liquids of Trametes versicolor in relation to extracellular laccase activity. J Basic Microbiol 38:371–382

    Article  PubMed  CAS  Google Scholar 

  • Gunther T, Sack U, Hofrichter M, Latz M (1998) Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J Basic Microbiol 38:113–122

    Article  Google Scholar 

  • Guo M, Lu F, Pu J, Bai D, Du L (2005) Molecular cloning of the cDNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica. Appl Microbiol Biotechnol 69:178–183

    Article  PubMed  CAS  Google Scholar 

  • Gupta BN (1987) Report: Indo-Dutch project on bioconversion of crop residues. National Dairy Research Institute, Karnal, pp 1–66

    Google Scholar 

  • Gupta R, Mehta G, Khasa YP, Kuhad RC (2011) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22:797–804

    Article  PubMed  CAS  Google Scholar 

  • Hakala TK, Maijala P, Konn J, Hatakka A (2004) Evaluation of novel wood rotting polypores and corticoid fungi for the decay and biopulping of Norway spruce( Picea abies) wood. Enzyme Microb Technol 34:255–263

    Article  CAS  Google Scholar 

  • Hakala TK, Lundell T, Galkin S, Maijala P, Kalkkinen N, Hatakka A (2005) Manganese peroxidases, laccase and oxalic acid from the selective white rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb Technol 36:461–468

    Article  CAS  Google Scholar 

  • Hakala T, Hilden K, Maijala P, Olsson C, Hadakka A (2006) Differential regulation of manganese pero­xidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 73:839–849

    Article  PubMed  CAS  Google Scholar 

  • Hamman OB, de la Rubia T, Martinez J (1999) The effect of manganese on the production of Phanerochaete flavido-alba ligninolytic peroxidases in nitrogen limited cultures. FEMS Microbiol Lett 177:137–142

    Article  Google Scholar 

  • Han JR, An CH, Yuan JM (2005) Solid-state fermentation of cornmeal with the basidiomycete Ganoderma lucidum for degrading starch and upgrading nutritional value. J Appl Microbiol 99:910–915

    Article  PubMed  CAS  Google Scholar 

  • Haselwandter K, Bobbleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153:352–354

    Article  CAS  Google Scholar 

  • Hatakka AI (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hatakka AI (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Lignin, humic substances and coal, vol 1. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Hatakka AI, Pirhonen TI (1985) Cultivation of wood rotting fungi on agricultural lignocellulosic materials for the production of crude protein. Agric Wastes 12:81–97

    Article  CAS  Google Scholar 

  • Hatakka AI, Kantelinen A, Tervilä-wilo A, Viikari L (1987) Production of ligninases by Phlebia radiata in agitated cultures. In: Odier E (ed) Lignin enzymic and microbial degradation, Symp Intern. INRA, Paris, pp 185–189

    Google Scholar 

  • Hatvani N, Mecs I (2001) Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process. Process Biochem 37:491–496

    Article  Google Scholar 

  • Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese independent reaction. Appl Environ Microbiol 64:2788–2793

    PubMed  CAS  Google Scholar 

  • Heinzkill M, Bech L, Halkier T, Schneider P, Anke T (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl Environ Microbiol 64:1601–1606

    PubMed  CAS  Google Scholar 

  • Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  CAS  Google Scholar 

  • Highley TL, Dashek WV (1998) Biotechnology in the study of brown- and white-rot decay. In: Bruce A, John W (eds) Forest products biotechnology. Taylor & Francis, London, pp 15–36

    Google Scholar 

  • Higuchi T (1989) Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. In: Lewis NG, Paice MG (eds) Biogenesis and bio­degradation of plant cell Polymers acs symposium series. American Chemical Society, Washington, DC, pp 482–502

    Chapter  Google Scholar 

  • Hofrichter M (2002) Review: Lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Hofrichter M, Fritsche W (1997) Depolymerization of low-rank coal by extracellular fungal enzyme systems. II. The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus Nematoloma frowardii b19. Appl Microbiol Biotechnol 47:419–424

    Article  CAS  Google Scholar 

  • Hofrichter M, Scheibner K, Schneegass I, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl Environ Microbiol 64:399–404

    PubMed  CAS  Google Scholar 

  • Hofrichter M, Scheibner K, Bublitz F, Schneegaß I, Ziegenhagen D, Martens R, Fritsche W (1999a) Depolymerization of straw lignin by manganese peroxidase from Nematoloma frowardii is accompanied by release of carbon dioxide. Holzforschung 53:161–166

    Article  CAS  Google Scholar 

  • Hofrichter M, Vares K, Scheibner K, Galkin S, Sipila J, Hatakka A (1999b) Mineralization and solubilization of synthetic lignin by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J Biotechnol 67:217

    Article  CAS  Google Scholar 

  • Hofrichter M, Vares T, Kalsi M, Galkin S, Scheibner K, Fritsche W, Hataka A (1999c) Production of manganese peroxidase and organic acids and mineralisation of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Appl Environ Microbiol 65:1864–1870

    PubMed  CAS  Google Scholar 

  • Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pinewood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593

    Article  PubMed  CAS  Google Scholar 

  • Hoshida H, Nakao M, Kanazawa H, Kubo K, Hakukawa T, Morimasa K, Akada R, Nishizawa Y (2001) Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. J Biosci Bioeng 92:372–380

    PubMed  CAS  Google Scholar 

  • Houborg K, Harris P, Poulsen JC, Schneider P, Svendsen A, Larsen S (2003) The structure of a mutant enzyme of Coprinus cinereus peroxidase provides an understanding of its increased thermostability. Acta Crystallogr D Biol Crystallogr 59:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Huang ST, Tzean SS, Tsai BY, Hsieh HJ (2009) Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomea. Microbiology 155:424–433

    Article  PubMed  CAS  Google Scholar 

  • Huang DL, Zeng GM, Feng CL, Hu S, Lai C, Zhao MH, Su FF, Tang L, Liu HL (2010) Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting. Bioresour Technol 101:4062–4067

    Article  PubMed  CAS  Google Scholar 

  • Huang SJ, Liu ZM, Huang XL, Guo LQ, Lin J-F (2011) Molecular cloning and characterization of a novel laccase gene from a white-rot fungus Polyporus grammocephalus TR16 and expression in Pichia pastoris. Lett Appl Microbiol 52:290–297

    Article  PubMed  CAS  Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic, New York

    Google Scholar 

  • Huoponen K, Ollikka P, Kalin M, Walther I, Mantsala P, Reiser J (1990) Characterization of lignin peroxidase-encoding gene from lignin-degrading basidiomycetes. Gene 89:145–150

    Article  PubMed  CAS  Google Scholar 

  • Hüttermann A, Milstein O, Nicklas B, Trojanowski J, Haars A, Kharazipour A (1989) Enzymatic modification of lignin for technical use. In: Glasser WG, Sarkanen S (eds) Lignin – properties and materials, ACS symposium series. ACS Publications, Washington, DC, pp 361–370

    Chapter  Google Scholar 

  • Iqbal M, Mercer DK, Miller PGG, McCarthy AJ (1994) Thermostable extracellular peroxidases from Streptomyces thermoviolaceus. Microbiology 140:1457–1465

    Article  CAS  Google Scholar 

  • Irie T, Honda Y, Watanabe T, Kuwahara M (2001) Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 55:566–570

    Article  PubMed  CAS  Google Scholar 

  • Jalc D, Nerud F, Erbanova P, Siroka P (1996) Effect of white-rot basidiomycetes-treated wheat straw on rumen fermentation in artificial rumen. Reprod Nutr Dev 36:263–270

    Article  PubMed  CAS  Google Scholar 

  • Jalc D, Siroka P, Ceresnakova Z (1997) Effect of six species of white-rot basidiomycetes on the chemical composition and rumen degradability of wheat straw. J Gen Appl Microbiol 43:133–137

    Article  PubMed  CAS  Google Scholar 

  • Johansson T, Nyman PO (1996) A cluster of genes encoding major isozymes of lignin peroxidase, and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene 170:31–38

    Article  PubMed  CAS  Google Scholar 

  • Johansson T, Nymann P, Cullen D (2002) Differential regulation of mnp2, a new manganese peroxidase encoding gene from the lignolytic fungus Trametes versicolor PRL572. Appl Environ Microbiol 68:2077–2080

    Article  PubMed  CAS  Google Scholar 

  • Jolivalt C, Madzak C, Brault A, Caminade E, Malosse C, Mougin C (2005) Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Appl Microbiol Biotechnol 66:450–456

    Article  PubMed  CAS  Google Scholar 

  • Jonsson L, Nyman PO (1992) Characterization of a lignin peroxidase gene from the white rot fungus Trametes versicolor. Biochimie 74:177–182

    Article  PubMed  CAS  Google Scholar 

  • Jonsson L, Nyman PO (1994) Tandem lignin peroxidase genes from the fungus Trametes versicolor. Biochim Biophys Acta 218:408–412

    Google Scholar 

  • Jonsson L, SjSstrsm K, Hlggstriim I, Nyman PO (1995) Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim Biophys Acta 1251:210–215

    Article  PubMed  CAS  Google Scholar 

  • Jönsson L, Saloheimo M, Penttil M (1997) Laccase from the white-rot fungus Trametes versicolor: cDNA cloning of lcc1 and expression in Pichia pastoris. Curr Genet 32:425–430

    Article  PubMed  Google Scholar 

  • Joo SS, Ryu IW, Park JK (2008) Molecular cloning and expression of a laccase from Ganoderma lucidum and its antioxidative properties. Mol Cells 25:112–118

    PubMed  CAS  Google Scholar 

  • Jung H-JG, Valdez FR, Abad AR, Blanchette RA, Hat-field RD (1992a) Effect of white rot basidiomycetes on chemical composition and in vitro digestibility of oat straw and alfalfa stems. J Anim Sci 70:1928–1935

    PubMed  CAS  Google Scholar 

  • Jung H-JG, Valdez FR, Hatfield RD, Blanchette RA (1992b) Cell wall composition and degradability of forage stems following chemical and biological delignification. J Sci Food Agric 8:347–355

    Article  Google Scholar 

  • Kaal EEJ, Field JA, Joyce TW (1995) Increasing ligninolyic enzyme activities in several white-rot basidiomycetes by nitrogen-sufficient media. Bioresour Technol 53:133–139

    Article  CAS  Google Scholar 

  • Kahlon SS (1986) SCP production by Chaetomium cellulolyticum on treated waste cellulose. J Res Punjab Agric Univ 23:330–335

    Google Scholar 

  • Kajita S, Sugawara S, Miyazaki Y, Nakamura M, Katayama Y, Shishido K, Iimura Y (2004) Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor. Appl Microbiol Biotechnol 66:194–199

    Article  PubMed  CAS  Google Scholar 

  • Kakkar VK, Dhanda S (1998) Comparative evaluation of wheat and paddy straws for mushroom production and feeding residual straws to ruminants. Bioresour Technol 66:175–177

    Article  CAS  Google Scholar 

  • Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2004) Production and induction of manganese peroxidase isozymes in a white-rot fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 65:287–294

    Article  PubMed  CAS  Google Scholar 

  • Karunanandaa K, Varga GA (1996) Colonization of rice straw by white-rot fungi (Cyathus stercoreus): effect on ruminal fermentation pattern, nitrogen metabolism and fibre utilization during continuous culture. Anim Feed Sci Technol 61:1–16

    Article  Google Scholar 

  • Karunanandaa K, Fales SL, Varga GA, Akin DE, Rigsby LL, Royse DJ (1992) Chemical composition and biodegradability of crop residues colonized by white rot fungi. J Sci Food Agric 60:105–112

    Article  CAS  Google Scholar 

  • Kersten PJ, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87

    Article  PubMed  CAS  Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201

    PubMed  CAS  Google Scholar 

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480

    PubMed  CAS  Google Scholar 

  • Kiiskinen LL, Kruus K, Bailey M, Ylosmaki E, Siikaaho M, Saloheimo M (2004) Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology 150:3065–3074

    Article  PubMed  CAS  Google Scholar 

  • Kilaru S, Hoegger PJ, Majcherczyk A, Burns C, Shishido K, Bailey A, Foster GD, Kües U (2006) Expression of laccase gene lcc1 in Coprinopsis cinerea under control of various basidiomycetous promoters. Appl Microbiol Biotechnol 71:200–210

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Yeo S, Kum J, Song H-G, Choi HT (2005) Cloning of a manganese peroxidase cDNA gene repressed by manganese in Trametes versicolor. J Microbiol 43:569–571

    PubMed  CAS  Google Scholar 

  • Kim J-M, Park S-M, Kim D-H (2010) Heterologous expression of a tannic acid-inducible laccase3 of Cryphonectria parasitica in Saccharomyces cerevisiae. BMC Biotechnol 10:18–27

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Asada Y, Kuwahara M (1990) Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl Microbiol Biotechnol 32:436–442

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480

    PubMed  Google Scholar 

  • Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–308

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Kishi K, Wariishi H, Marquez L, Dunford HB, Gold MH (1994) Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry 33:8694–8701

    Article  PubMed  CAS  Google Scholar 

  • Klonowska A, Le Petit J, Tron T (2001) Enhancement of minor laccase production in the basidiomycete Marasmius quercophilus C30. FEMS Microbiol Lett 200:25–30

    Article  PubMed  CAS  Google Scholar 

  • Kojima Y, Tsukuda Y, Kawai Y, Tsukamato A, Sugiura J, Sakaino M, Yukio K (1990) Cloning, sequence analysis and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem 260:15224–15230

    Google Scholar 

  • Koroleva OV, Garilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO, Yavmetdinov IS, Yaropolov AI (2002) Production of lignin modifying enzymes by co-cultivated white-rot fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima. Enzyme Microb Technol 30:573–580

    Article  CAS  Google Scholar 

  • Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27:663–693

    Article  PubMed  CAS  Google Scholar 

  • Krcmar P, Ulrich R (1998) Degradation of polychlorinated biphenyl mixtures by the lignin-degrading fungus Phanerochaete chrysosporium. Folia Microbiol 43:79–84

    Article  CAS  Google Scholar 

  • Kristensen JB, Thygesen LG, Felby C, Jorgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1:5

    Article  PubMed  CAS  Google Scholar 

  • Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13:151–172

    Article  CAS  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KE (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Eriksson KE (ed) Advances in biochemical engineering biotechnology. Springer, Berlin, pp 46–125

    Google Scholar 

  • Kuhar S, Nair LM, Kuhad RC (2008) Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can J Microbiol 54:305–313

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Gomes J (2008) Performance evaluation of reactors designed for bioconversion of wheat straw to animal feed. Anim Feed Sci Technol 144:149–166

    Article  CAS  Google Scholar 

  • Kumar AG, Sekaran G, Krishnamoorthy S (2006) Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium. Bioresour Technol 97:1521–1528

    Article  CAS  Google Scholar 

  • Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact 7:32–49

    Article  PubMed  CAS  Google Scholar 

  • Kurt S, Buyukalaca S (2010) Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajorcaju) cultivated on different agricultural wastes. Bioresour Technol 101:3164–3169

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of 2 extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  • Lackner R, Srebotnik E, Messner K (1991) Oxidative degradation of high molecular weight chlorolignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 178:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Leatham G, Stahman MA (1981) Studies on the laccase of Lentinus edodes: specificity, localization and association with the development of fruiting bodies. J Gen Microbiol 125:147–157

    CAS  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185

    Article  PubMed  CAS  Google Scholar 

  • Levin L, Forchiassin F, Ramos AM (2001) Ligninolytic enzymes of the white-rot basidiomycete Trametes trogii. Acta Biotechnol 21:179–186

    Article  CAS  Google Scholar 

  • Levin L, Forchiassin F, Ramos AM (2002) Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia 94:377–383

    Article  PubMed  CAS  Google Scholar 

  • Levy JF (1975) Bacteria associated with wood in ground contact. In: Liese W (ed) Biological transformation of wood by microorganisms. Springer, Berlin, pp 64–73

    Chapter  Google Scholar 

  • Li KC, Helm RF, Eriksson KEL (1998) Mechanistic studies of the oxidation of a non-phenolic lignin model compound by the laccase/1-hydroxybenzotriazole redox system. Biotechnol Appl Biochem 27:239–243

    CAS  Google Scholar 

  • Li L, Li XZ, Tang WZ, Zhao J, Qu Y-B (2008) Screening of a fungus capable of powerful and selective delignification on wheat straw. Lett Appl Microbiol 47:415–420

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yuan H, Yang J (2009) Bacteria and lignin degradation. Front Biol China 4:29–38

    Article  Google Scholar 

  • Liese W (1970) Ultrastructural aspects of woody tissue disintegration. Annu Rev Phytopathol 8:231

    Article  Google Scholar 

  • Liu W, Chao Y, Liu S, Qian S (2003) Molecular cloning and characterization of a laccase gene from the basidiomycete Fome lignosus and expression in Pichia pastoris. Appl Microbiol Biotechnol 63:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lobos S, Larrain J, Salas L, Cullen D, Vicuna R (1994) Isozymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. J Gen Microbiol 140:2691–2698

    CAS  Google Scholar 

  • Lobos S, Larrondo L, Salas L, Karahanian E, Vicuña R (1998) Cloning and molecular analysis of a cDNA and the Cs-mnp1 gene encoding a manganese peroxidase isoenzyme from the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Gene 206:185–193

    Article  PubMed  CAS  Google Scholar 

  • Lomascola E, Record I, Herpoe-Gimbert M, Delattre J, Robert L, Georis J, Dauvrin T, Sigoillot J-C, Asther M (2003) Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer. J Appl Microbiol 94:618–624

    Article  Google Scholar 

  • Lomascolo A, Cayol JL, Roche M, Guo L, Robert JL, Record E, Lessage-Meessen L, Olliver B, Sigoillot JC, Asther M (2002) Molecular clustering of Pycnoporus strains from various geographic origins and isolation of monokaryotic strains for laccase hyperproduction. Mycol Res 106:1193–1203

    Article  CAS  Google Scholar 

  • López M, Loera O, Guerrero-Olazarán M, Viader-Salvadó JM, Gallegos-López JA, Fernández FJ, Favela-Torres E, Viniegra-González G (2010) Cell growth and Trametes versicolor laccase production in transformed Pichia pastoris cultured by solid-state or submerged fermentations. J Chem Technol Biotechnol 85:435–440

    Google Scholar 

  • Lundell T (1993) Ligninolytic system of the white rot fungus Phlebia radiata: Lignin model compound studies. Dissertation, University of Helsinki

    Google Scholar 

  • Ma B, Mayfield MB, Gold MH (2003) Homologous expression system of Phanerochaete chrysosporium manganese peroxidase, using bialaphos resistance as a dominant selectable marker. Curr Genet 43:407–414

    Article  PubMed  CAS  Google Scholar 

  • Machuca A, Ferraz A (2001) Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme Microb Technol 29:386–391

    Article  CAS  Google Scholar 

  • Majcherczyk A, Johannes C, Hüttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22:335–341

    Article  CAS  Google Scholar 

  • Mäkelä MR, Galkin S, Hatakka A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb Technol 30:542–549

    Article  Google Scholar 

  • Mäkelä MR, Hilden K, Hatakka A, Lundell TK (2009) Oxalate decarboxylase of the white rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced expression on wood and in liquid cultures. Microbiology 155:2726–2738

    Article  PubMed  CAS  Google Scholar 

  • Maltseva OV, Niku-Paavola M-L, Leontievsky AA, Myasoedova NM, Golovleva LA (1991) Ligninolytic enzymes of the white rot fungus Panus tigrinus. Biotechnol Appl Biochem 13:291–302

    CAS  Google Scholar 

  • Manubens A, Avila M, Canessa P, Vicuna R (2003) Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet 43:433–438

    Article  PubMed  CAS  Google Scholar 

  • Martinez AT, Camarero S, Guillen F, Gutierrez A, Munoz C, Varela E, Martinez MJ, Barrasa JM, Ruel K, Pelayo JM (1994) Progress in biopulping of non-woody materials – chemical, enzymatic and ultrastructural aspects of wheat-straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol Rev 13:265–274

    Article  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  PubMed  CAS  Google Scholar 

  • Mayfield MB, Kishi T, Alic M, Gold MH (1994) Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 60:4303–4309

    PubMed  CAS  Google Scholar 

  • McGuirl MA, Dooley DM (1999) Copper-containing oxidases. Curr Opin Chem Biol 3:138–144

    Article  PubMed  CAS  Google Scholar 

  • Mendonça RT, Jara JF, González V, Elissetche JP, Freer J (2008) Evaluation of the white rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. J Ind Microbiol Biotechnol 35:1323–1330

    Article  PubMed  CAS  Google Scholar 

  • Mercer DK, Iqbal M, Miller PGG, McCarthy AJ (1996) Screening actinomycetes for extracellular peroxidase activity. Appl Environ Microbiol 62:2186–2190

    PubMed  CAS  Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    Article  PubMed  CAS  Google Scholar 

  • Mhlanga CYL (2001) Thermophilic lignin degrading enzymes from actinomycetes for biotechnological applications. MSc thesis, Rhodes University

    Google Scholar 

  • Micales JA (1997) Localization and induction of oxalate decarboxylase in the brown-rot wood decay fungus Postia pacenta. Int Biodeter Biodegr 39:125–132

    Article  CAS  Google Scholar 

  • Moo-Young M, Chahal DS, Vlach D (1978) Single cell protein from various chemically pretreated wood substrates using Chaetomium cellulolyticum. Biotechnol Bioeng 21:1361–1371

    Google Scholar 

  • Moo-Young M, Moreira AR, Daugulis AJ (1979) Economics of fermentation processes for SCP production from agricultural wastes. Can J Chem Eng 57:741–749

    Article  CAS  Google Scholar 

  • Moreira MT, Feijoo G, Lema JM (2000a) Manganese peroxidase production by Bjerkandera sp. BOS55.1. Regulation of enzymatic production. Bioprocess Eng 23:657–661

    Article  CAS  Google Scholar 

  • Moreira MT, Mielgo I, Feijoo G, Lema JM (2000b) Evaluation of different fungal strains in the decolorization of synthetic dyes. Biotechnol Lett 22:1499–1503

    Article  CAS  Google Scholar 

  • Moreira MT, Torrado A, Feijoo G, Lema JM (2000c) Manganese peroxidase production by Bjerkandera sp. BOS55.2. Operation in stirred tank reactors. Bioprocess Eng 23:663–667

    Article  CAS  Google Scholar 

  • Moreira PR, Duez C, Dehareng D, Antunes A, Almeida-Vara E, Frère JM, Malcata FX, Duarte JC (2005) Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J Biotechnol 118:339–352

    Article  PubMed  CAS  Google Scholar 

  • Moyson E, Verachtert H (1991) Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate. Appl Microbiol Biotechnol 36:421–424

    Article  CAS  Google Scholar 

  • Muheim A, Waldner R, Leisola MSA, Fiechter A (1990) An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkandera adusta. Enzyme Microb Technol 12:204–209

    Article  CAS  Google Scholar 

  • Munoz C, Guillen F, Martinez AT, Martinez MJ (1997a) Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties and participation in activation of molecular oxygen and Mn2+ oxidation. Appl Environ Microbiol 63:2166–2174

    PubMed  CAS  Google Scholar 

  • Munoz C, Guillen F, Martinez AT, Martinez MJ (1997b) Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol 34:1–5

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T (2003) Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 149:2455–2462

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Sakamoto Y, Nakade K, Sato T (2007) Isolation and characterization of the gene encoding a manganese peroxidase from Lentinula edodes. Mycoscience 48:125–130

    Article  CAS  Google Scholar 

  • Nair LM (2006) Bioconversion of Prosopis juliflora (Vilayati babul) hydrolysate in to ethanol by Pichia stipis NCIM-3498. MPhil thesis, University of Delhi, New Delhi

    Google Scholar 

  • Nerud F, Misurcova Z (1989) Production of ligninolytic peroxidases by the white-rot fungus Coriolopsis occidentalis. Biotechnol Lett 11:427–432

    Article  CAS  Google Scholar 

  • Nerud F, Zouchova Z, Misurcova Z (1991) Ligninolytic properties of different white-rot fungi. Biotechnol Lett 13:657–660

    Article  CAS  Google Scholar 

  • Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Technical communication: survey and analysis of commercial cellulase preparation suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 14:301–304

    Article  CAS  Google Scholar 

  • Nigam JN (1998) Single cell protein from pineapple cannery effluent. World J Microbiol Biotechnol 14:693–696

    Article  CAS  Google Scholar 

  • Niku-Paavola ML, Raaska L, Itavaara M (1990) Detection of white-rot fungi by a non-toxic stain. Mycol Res 94:27–31

    Article  Google Scholar 

  • Nilsson T, Daniel GF (1983) Tunnelling bacteria. Document, International Research Group/Wood Pre­ser­vation, No. 1186. France

    Google Scholar 

  • Nilsson T, Daniel GF, Kirk TK, Obst JR (1989) Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 43:11–18

    Article  CAS  Google Scholar 

  • Novotny C, Erbanova P, Cathaml T, Rothschild N, Dosoretz C, Sasek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853

    Article  PubMed  CAS  Google Scholar 

  • Nuske J, Scheibner K, Dornberger U, Ullrich R, Hofrichter M (2002) Large scale production of manganese-peroxidase using agaric white-rot fungi. Enzyme Microb Technol 30:556–561

    Article  CAS  Google Scholar 

  • O’Callaghan J, O’Brien MM, McClean K, Dobson AD (2002) Optimization of the expression of a Trametes versicolor laccase gene in Pichia pastoris. J Ind Microbiol Biotechnol 29:55–59

    Article  PubMed  CAS  Google Scholar 

  • O’Hara EB, Timberlake WE (1989) molecular characterization of the Aspergillus nidulans yA locus. Genetics 121:249–254

    PubMed  Google Scholar 

  • Okano K, Kitagawa M, Sasaki Y, Watanabe T (2005) Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminant by white-rot basidiomycetes. Anim Feed Sci Technol 120:235–243

    Article  Google Scholar 

  • Okano K, Iida Y, Samsuri M, Prasetya B, Usagava T, Watanabe T (2006) Comparison of in vitro digestibility and chemical composition among sugarcane bagasses treated by four white rot fungi. Anim Sci J 77:308–313

    Article  CAS  Google Scholar 

  • Okano K, Ohkoshi N, Nishiyama A, Usagawa T, Kitagawa M (2009) Improving the nutritive value of madake bamboo, Phyllostachys bambusoides, for ruminants by culturing with the white-rot fungus Ceriporiopsis subvermispora. Anim Feed Sci Technol 152:278–285

    Article  CAS  Google Scholar 

  • Orth AB, Royse DJ, Tien M (1993) Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59:4017–4023

    PubMed  CAS  Google Scholar 

  • Otjen L, Blanchette RA, Leatham GF (1988) Lignin distribution in wood delignified by white rot fungi- X-ray-microanalysis of decayed wood treated with bromine. Holzforschung 42:281–288

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307

    Article  PubMed  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the lignolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  PubMed  CAS  Google Scholar 

  • Papinutti VL, Diorio LA, Forchiassin F (2003) Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran. J Ind Microbiol Biotechnol 30:157–160

    Article  PubMed  CAS  Google Scholar 

  • Pease EA, Tien M (1992) Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J Bacteriol 174:3532–3540

    PubMed  CAS  Google Scholar 

  • Périé FH, Gold MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white-rot fungus Dichomitus squalens. Appl Environ Microbiol 57:2240–2245

    PubMed  Google Scholar 

  • Phillippi F (1893) Die Pilze Chiles, soweit dieselben als Nahrungsmittel gebraucht werden. Hedwigia 32:115–118

    Google Scholar 

  • Pickard MA, Vandertol H, Roman R, Vazquez-Duhalt R (1999) High production of ligninolytic enzymes from white-rot fungi in cereal bran liquid medium. Can J Microbiol 45:627–631

    Article  CAS  Google Scholar 

  • Piscitelli A, Giardina P, Mazzoni C, Sannia G (2005) Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69:428–439

    Article  PubMed  CAS  Google Scholar 

  • Pogni R, Baratto MC, Teutloff C, Giansanti S, Ruiz-Dueñas FJ, Choinowski T, Piontek K, Martínez AT, Lendzian F, Basosi R (2006) A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem 281:9517–9526

    Article  PubMed  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  PubMed  CAS  Google Scholar 

  • Pointing SB, Jones EBG, Vrijmoed LLP (2000) Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92:139–144

    Article  CAS  Google Scholar 

  • Raeder U, Thompson W, Broda P (1989) RFLP-based genetic map of Phanerochaete chrysosporium ME446: lignin peroxidase genes occur in clusters. Mol Microbiol 7:911–918

    Article  Google Scholar 

  • Rajakumar S, Gaskell J, Cullen D, Lobos S, Karahanian E, Vicuna R (1996) liP-like genes in Phanerochaete sordida and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity. Appl Environ Microbiol 62:2660–2663

    PubMed  CAS  Google Scholar 

  • Ralph JP, Graham LA, Catcheside DEA (1996) Extracellular oxidases and the transformation of solubilised low-rank coal by wood-rot fungi. Appl Microbiol Biotechnol 46:226–232

    Article  CAS  Google Scholar 

  • Ramachandra M, Crawford DL, Hertel G (1988) Charac­terization of an extracellular lignin per­oxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063

    PubMed  CAS  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood. Wiley, London

    Google Scholar 

  • Record E, Punt PJ, Chamkha M, Labat M, van den Hondel CAMJJ, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609

    Article  PubMed  CAS  Google Scholar 

  • Reddy GV, Babu PR, Komaraih P, Roy KRRM, Kothari IL (2003) Utilization of banana waste for the production of ligninolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38:1457–1462

    Article  CAS  Google Scholar 

  • Reinhammar B (1984) Laccase. In: Lontie R (ed) Copper proteins and copper enzymes. CRC Press, Boca Raton, pp 1–35

    Google Scholar 

  • Ricotta A, Unz RF, Bollag JM (1996) Role of laccase in the degradation of pentachlorophenol. Bull Environ Contam Toxicol 57:560–567

    Article  PubMed  CAS  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  PubMed  CAS  Google Scholar 

  • Robene-Soustrade I, Lung-Escarmant B, Bono JJ, Taris B (1992) Identification and partial characterization of an extracellular manganese-dependent peroxidase in Armillaria ostoyae and Armillaria mellea. Eur J Forest Pathol 22:227–236

    Article  Google Scholar 

  • Robertson SA, Mason SL, Hack E, Abbott GD (2008) A comparison of lignin oxidation, enzymatic activity and fungal growth during white-rot decay of wheat straw. Org Geochem 39:945–951

    Article  CAS  Google Scholar 

  • Robinson T, Chandran B, Nigam P (2001) Studies on the production of enzymes by white-rot fungi for the decolorisation of textile dyes. Enzyme Microb Technol 29:575–579

    Article  CAS  Google Scholar 

  • Rodríguez E, Ruiz-Dueñas FJ, Kooistra R, Ram A, Martínez AT, Martínez MJ (2008) Isolation of two laccase genes from the white-rot fungus Pleurotus eryngii and heterologous expression of the pel3 encoded protein. J Biotechnol 134:9–19

    Article  PubMed  CAS  Google Scholar 

  • Romero E, Speranza M, García-Guinea J, Martínez AT, Martínez MJ (2007) An anamorph of the white-rot fungus Bjerkandera adusta capable of colonizing and degrading compact disc components. FEMS Microbiol Lett 275:122–129

    Article  PubMed  CAS  Google Scholar 

  • Rothschild N, Hadar Y, Dosoretz CG (1997) Lignin peroxidase isozymes from Phanerochaete chrysosporium can be enzymatically dephosphorylated. Appl Environ Microbiol 63:857–861

    PubMed  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235

    Article  PubMed  Google Scholar 

  • Ruiz-Duenas FJ, Camarero S, Perez-Boada M, Martınez MJ, Martınez AT (2001) A new versatile peroxidase from Pleurotus. Biochem Soc Trans 29:116–122

    Article  PubMed  CAS  Google Scholar 

  • Ruttiman GB, Vicuna R, Sapag C, Seenlenfreund D (1998) Biochemical and genetic studies of bacteria metabolizing lignin-related compounds. Arch Biol Med Exp 21:247–255

    Google Scholar 

  • Ruttimann C, Schwember E, Salas L, Cullen D, Vicuna R (1992) Ligninolytic enzymes of the white rot basidiomycetes Phlebia brevispora and Ceriporiopsis subvermispora. Biotechnol Appl Biochem 16:64–76

    CAS  Google Scholar 

  • Sakamoto Y, Nakade K, Nagai M, Uchimiya H, Sato T (2009) Cloning of Lentinula edodes lemnp2, a manganese peroxidase that is secreted abundantly in sawdust medium. Mycoscience 50:116–122

    Article  CAS  Google Scholar 

  • Saloheimo M, Barajas V, Niku-Paavola M-L, Knowles JKC (1989) A lignin peroxidase-encoding cDNA from the white rot fungus Phlebia radiata: characterization and expression in Trichoderma reesei. Gene 85:343–351

    Article  PubMed  CAS  Google Scholar 

  • Saloheimo M, Leena M, Paavola N (1991) Heterologous production of a lignolytic enzyme: expression of the Phlebia radiate laccase gene in Trichoderma reesei. Nat Biotechnol 9:987–990

    Article  CAS  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  Google Scholar 

  • Saparrat MCN, Guillén F, Arambarri AM, Martínez AT, Martínez MJ (2002) Induction, isolation and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida. Appl Environ Microbiol 68:1534–1540

    Article  PubMed  CAS  Google Scholar 

  • Schmidt O, Nagashima Y, Liese W, Schmitt U (1987) Bacterial wood degradation studies under laboratory conditions in lakes. Holzforschung 41:137–140

    Article  Google Scholar 

  • Schoemaker HE, Leisola MSA (1990) Degradation of lignin by Phanerochaete chrysosporium. J Biotechnol 13:101–109

    Article  CAS  Google Scholar 

  • Sermanni GG, D’Annibale A, Di Lena G, Vitale NS, Di Mattia E, Minelli V (1994) The production of exo-enzymes by Lentinus edodes and Pleurotus ostreatus and their use for upgrading corn straw. Bioresour Technol 48:173–178

    Article  CAS  Google Scholar 

  • Shah MP, Reddy GV, Banerjee R, Babu PR, Kothari IL (2005) Microbial degradation of banana waste under solid state bioprocessing using two lignocellulolytic fungi (Phylosticta spp. MPS-001 and Aspergillus spp. MPS-002). Process Biochem 40:445–451

    Article  CAS  Google Scholar 

  • Sharma RK, Arora DS (2010a) Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresour Technol 101:9248–9253

    Article  PubMed  CAS  Google Scholar 

  • Sharma RK, Arora DS (2010b) Changes in biochemical constituents of paddy straw during degradation by white rot fungi and its impact on in vitro digestibility. J Appl Microbiol 109:679–686

    PubMed  CAS  Google Scholar 

  • Sharma KK, Kuhad RC (2010) Genetic transformation of lignin degrading fungi facilitated by Agrobacterium tumefaciens. BMC Biotechnol 10:67–75

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Kapoor M, Kuhad RC (2005) In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02. Lett Appl Microbiol 41:24–31

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Gupta S, Kuhad RC (2006) Agrobacterium-mediated delivery of marker genes to Phanerochaete chrysosporium mycelial pellets: a model transformation system for white-rot fungi. Biotechnol Appl Biochem 43:181–186

    Article  PubMed  CAS  Google Scholar 

  • Shary S, Ralph SA, Hammel KE (2007) New insights into the ligninolytic capability of a wood decay ascomycete. Appl Environ Microbiol 20:6691–6694

    Article  CAS  Google Scholar 

  • Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22:823–831

    Article  PubMed  CAS  Google Scholar 

  • Sigoillot C, Camarero S, Vidal T, Record E, Asther M, Pérez-Boada M, Martínez MJ, Sigoillot J-C, Asther M, Colom JF (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J Biotechnol 115:333–343

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Abidi AB, Darmwal NS, Agrawal AK (1991) Influence of nutritional factors on cellulase production from natural lignocellulosic residues by Aspergillus niger. Agric Biol Res 7:19–27

    Google Scholar 

  • Singh A, Bajar S, Bishnoi NR, Singh N (2010) Laccase production by Aspergillus heteromorphus using distillery spent wash and lignocellulosic biomass. J Hazard Mater 15:79–82

    Google Scholar 

  • Sirohi SK, Rai SN (1999) Synergistic effect of urea and lime treatment of wheat straw on chemical composition, in sacco and in vitro digestibility. Asian Aust J Anim Sci 12:1049–1053

    Google Scholar 

  • Sjoblad RD, Bollag JM (1981) Oxidative coupling of aromatic compounds by enzymes from soil microorganisms. In: Paul EA, Ladd JN (eds) Soil biochemistry. Marcel Dekker, New York, pp 113–152

    Google Scholar 

  • Steffen KT (2003) Degradation of recalcitrant biopolymers and polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Dissertationes Biocentri Viikki Universitatis Helsingiensis, 23/2003. PhD thesis, Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, p 68

    Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2002a) Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzyme Microb Technol 30:550–555

    Article  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002b) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68:3442–3448

    Article  PubMed  CAS  Google Scholar 

  • Stewart CS, Bryant MP (1988) The rumen bacteria. In: Hobson PN (ed) The rumen microbial ecosystem. Elsevier, New York, pp 21–76

    Google Scholar 

  • Stewart P, Kersten P, Wymelenberg AV, Gaskell J, Cullen D (1992) Lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. J Bacteriol 174:5036–5042

    PubMed  CAS  Google Scholar 

  • Stewart P, Whitwam RE, Kersten PJ, Cullen D, Tien M (1996) Efficient expression of a Phanero­chaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Microbiol Biotechnol 62:860–864

    CAS  Google Scholar 

  • Straatsma G, Samson RA, Olijnsma TW, Op den Camp HJM, Gerrits JPG, van Griensven LJLD (1994) Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol 60:454–458

    PubMed  CAS  Google Scholar 

  • Sugiura T, Yamagishi K, Kimura T, Nishida T, Kawagishi H, Hirai H (2009) Cloning and homologous expression of novel lignin peroxidase genes in the white-rot fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 73:1793–1798

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem 269:32759–32767

    PubMed  CAS  Google Scholar 

  • Sundstol F, Owen E (1984) Straw and other fibrous by-products as feed. Elsevier, Amsterdam, 604

    Google Scholar 

  • Sutherland JB, Blanchette RA, Crawford DL, Pometto AL (1979) Breakdown of Douglas-fir phloem by a lignocellulose-degrading Streptomyces. Curr Microbiol 2:123–126

    Article  CAS  Google Scholar 

  • Suzuki Y, Okano K, Kato S (1995) Characteristics of white-rotted woody materials obtained from shiitake mushroom (Lentinus edodes) and nameko mushroom (Pholiota nameko) cultivation with in vitro rumen fermentation. Anim Feed Sci Technol 24:130–137

    Google Scholar 

  • Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67:2167–2175

    Article  PubMed  CAS  Google Scholar 

  • Szklarz GD, Antibus RK, Sinsabaugh RL, Linkins AE (1989) Production of Phenol oxidases and Peroxidases by wood-rotting fungi. Mycologia 8:234–240

    Article  Google Scholar 

  • Tagger S, Perissol C, Gil G, Vogt G, Le Petit J (1998) Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreen oak litter (Quercus ilex L.). Enzyme Microb Technol 23:372–379

    Article  CAS  Google Scholar 

  • Tamaru H, Inoue H (1989) Isolation and characterization of a laccase-depressed mutant of Neurospora crassa. J Bacteriol 171:6288–6293

    PubMed  CAS  Google Scholar 

  • Tekere M, Zvvauya R, Read JS (2001) Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions. J Basic Microbiol 41:115–129

    Article  PubMed  CAS  Google Scholar 

  • Temp U, Zierold U, Claudia E (1999) Cloning and characterization of a second lactase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus. Gene 236:169–177

    Article  PubMed  CAS  Google Scholar 

  • Ten Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413

    Article  PubMed  CAS  Google Scholar 

  • Teunissen PJM, Field JA (1998) 2-Chloro-14-dimethoxybenzene as a novel catalytic cofactor for oxidation of anisyl alcohol by lignin peroxidase. Appl Environ Microbiol 64:830

    PubMed  CAS  Google Scholar 

  • Thomke S, Rundgren M, Eriksson S (1980) Nutritional evaluation of the white rot fungus – Sporotrichum pulverulentum – as a feedstuff to rats, pigs and sheep. Biotechnol Bioeng 22:2285–2303

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Tu C-PD (1987) Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326:520–523

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3, 4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. J Biol Chem 261:1687–1693

    PubMed  CAS  Google Scholar 

  • Touchburn SP, Chavex ER, Moo-Young M (1986) Chaetomium cellulolyticum microbial biomass protein evaluation with rats, chicks and piglets. In: Moo-Young M, Gregory KF (eds) Microbial biomass proteins. Elsevier Applied Science, London, pp 175–185

    Google Scholar 

  • Tripathi JP, Yadav JS (1992) Optimisation of solid substrate fermentation of wheat straw into animal feed by Pleurotus ostreatus – a pilot effort. Anim Feed Sci Technol 37:59–72

    Article  CAS  Google Scholar 

  • Tsukihara T, Honda Y, Sakai R, Watanabe T, Watanabe T (2006) Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. J Biotechnol 126:431–439

    Article  PubMed  CAS  Google Scholar 

  • Tuncer M, Ball AS (2002) Degradation of lignocellulose by extracellular enzymes produced by Thermomono­spora fusca BD25. Appl Microbiol Biotechnol 58:608–611

    Article  PubMed  CAS  Google Scholar 

  • Urzúa U, Larrondo LF, Lobos S, Larraín J, Vicuña R (1995) Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora. FEBS Lett 371:132–136

    Article  PubMed  Google Scholar 

  • Valaskova V, Baldrian P (2006) Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus – production of extracellular enzymes and characterization of the major cellulases. Microbiology 152:123613–123622

    Article  CAS  Google Scholar 

  • Valdez ODM, Flores EOG, García JAM et al (2008) Use of Pleurotus pulmonarius to change the nutritional quality of wheat straw. I. Effect on chemical composition. Interciencia 33:435–438

    Google Scholar 

  • Varela E, Martinez AT, Martinez MJ (2000) Southern blot screening for lignin peroxidase and aryl-alcohol oxidase genes in 30 fungal species. J Biotechnol 83:245–251

    Article  PubMed  CAS  Google Scholar 

  • Vares T (1996) Ligninolytic enzymes and lignin-degrading activity of taxonomically different white-rot fungi. PhD thesis, vol 44, Department of Applied Chemistry and Microbiology, University of Helsinki, Finland, p 67

    Google Scholar 

  • Vares T, Lundell TK, Hattaka AI (1992) Novel heme-containing enzyme possibly involved in lignin degradation by the white-rot fungus Junghuhnia separabilima. FEMS Microbiol Lett 99:53–58

    Article  CAS  Google Scholar 

  • Vares T, Lundell TK, Hattaka AI (1993) Production of multiple lignin peroxidases by the white-rot fungus Phlebia ochraceofulva. Enzyme Microb Technol 15:664–669

    Article  CAS  Google Scholar 

  • Vares T, Niemenmaa O, Hatakka A (1994) Secretion of ligninolytic enzymes and mineralization of 14 C-labelled synthetic lignin by three Phlebia tremellosa strains. Appl Environ Microbiol 60:569–575

    PubMed  CAS  Google Scholar 

  • Vasdev K, Kuhad RC (1994) Induction of laccase production in C. bulleri under shaking and static culture conditions. Folia Microbiol 39:326–330

    Article  CAS  Google Scholar 

  • Vasdev K, Dhawan S, Kapoor KR, Kuhad RC (2005) Biochemical characterization and molecular evidence of a laccase from the birds nest fungus Cyathus bulleri. Fungal Genet Biol 42:684–693

    Article  PubMed  CAS  Google Scholar 

  • Vikineswary S, Abdullah N, Renuvathani M, Sekaran M, Pandey A, Jones EBG (2006) Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. Bioresour Technol 97:171–177

    Article  PubMed  CAS  Google Scholar 

  • Villas-Boas SG, Esposito E, Mitchell DA (2002) Microbial conversion of lignocellulosic residues for production of animal feeds. Anim Feed Sci Technol 98:1–12

    Article  CAS  Google Scholar 

  • Villas-Boas SG, Esposito E, De Mendonca MM (2003) Bioconversion of apple pomace into a nutritionally enriched substrate by Candida utilis and Pleurotus ostreatus. Word J Microbiol Biotechnol 19:461–467

    Article  CAS  Google Scholar 

  • Volc J, Kubatova E, Daniel G, Sedmera P, Haltrich D (2001) Screening of basidiomycete fungi for the quinone-dependent sugar C-2/C-3 oxidoreductase, pyranose dehydrogenase, and properties of the enzyme from Macrolepiota rhacodes. Arch Microbiol 176:178–186

    Article  PubMed  CAS  Google Scholar 

  • Von Hunolstein C, Valenti CP, Visca P, Antonini G, Nicolini L, Orsi N (1986) Production of laccases A and B by a mutant strain of Trametes versicolor. J Gen Appl Microbiol 32:185–191

    Article  CAS  Google Scholar 

  • Wahleithner JA, Xu F, Brown KM, Brown SH, Golightly EJ, Halkier T, Kauppinen S, Pederson A, Schneider P (1996) The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403

    Article  PubMed  CAS  Google Scholar 

  • Waldner R, Leisola MSA, Fiechter A (1988) Comparison of ligninolytic activities of selected white-rot fungi. Appl Microbiol Biotechnol 29:400–407

    Article  CAS  Google Scholar 

  • Walker HG (1984) Physical treatment. In: Straw and other fibrous byproducts as feed. Elsevier, Amsterdam, pp 79–101

    Google Scholar 

  • Wariishi H, Valli K, Renganathan V, Gold MH (1989) Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J Biol Chem 264:14185–14191

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Shinzato N, Fukatsu T (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67:1797–1801

    Article  PubMed  CAS  Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  PubMed  CAS  Google Scholar 

  • Wood PM (1994) Pathways for production of Fenton’s reagent by wood-rotting fungi. FEMS Microbiol Rev 13:313–320

    Article  CAS  Google Scholar 

  • Yadav JS, Tripathi JP (1991) Optimization of cultiva­tion and nutrition conditions and substrate pretreatment for solid-substrate fermentation of wheat straw by Coriolus versicolor. Folia Microbiol 36:249–301

    Article  Google Scholar 

  • Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalboge H (1996) Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841

    PubMed  CAS  Google Scholar 

  • Yeo S, Park N, Song H, Choi HT (2007) Generation of a transformant showing higher manganese peroxidase (Mnp) activity by overexpression of Mnp gene in Trametes versicolor. J Microbiol 45:213–218

    PubMed  CAS  Google Scholar 

  • Zadrazil F (1985) Screening of fungi for lignin decomposition and conversion of straw into feed. Angew Bot 59:433–452

    Google Scholar 

  • Zadrazil F, Puniya AK (1995) Studies on effect of particle size on solid state fermentation of sugar cane bagasse into animal feed using white-rot fungi. Bioresour Technol 54:85–87

    Article  CAS  Google Scholar 

  • Zadrazil F, Kamra DN, Isikhuemhen OS, Schuchardt F, Flachowsky G (1996) Bioconversion of lignocellulose into ruminant feed with white rot fungi. J Appl Anim Res 10:105–124

    Article  Google Scholar 

  • Zeng GM, Yu M, Chen YN, Huang DL, Zhang JC, Huang HL et al (2010) Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour Technol 101:222–227

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13:119–130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Kuhad, R.C., Kuhar, S., Sharma, K.K., Shrivastava, B. (2013). Microorganisms and Enzymes Involved in Lignin Degradation Vis-à-vis Production of Nutritionally Rich Animal Feed: An Overview. In: Kuhad, R., Singh, A. (eds) Biotechnology for Environmental Management and Resource Recovery. Springer, India. https://doi.org/10.1007/978-81-322-0876-1_1

Download citation

Publish with us

Policies and ethics