Skip to main content

Epigenomics of Breast Cancer

  • Chapter
  • First Online:
Book cover Omics Approaches in Breast Cancer

Abstract

Breast cancer is the second most common malignant cancer and accounts for 1.38 million of the total new cancer cases and 458,400 of the total cancer deaths reported in 2008. Breast cancer with several subtypes is an extremely heterogeneous disease caused by interaction of both genetic and environmental risk factors. In order to understand the etiology of this heterogeneity, new perspectives like epigenetics are needed.

The term epigenetics was coined by Conrad Hal Waddington in the early 1940s. It refers to the study of gene function and regulation alterations without changes in the DNA sequence of the genome. The main epigenetic modifications are DNA methylation, histone modifications, and small noncoding RNAs (miRNAs). DNA methylation is the first to be associated with cancer and the most widely studied among epigenetic modifications. It regulates the gene expression by modifying the accessibility of DNA to the transcriptional machinery.

The importance of histone modification has been realized during the last 10 years, after identification of the coexistence of histone modifications. From the dynamically changing pattern of histone modification has emerged a new concept termed “histone cross talk.” The epigenetic modifications are faster and reversible than mutation and easily affected by aging, environmental stimuli, and food in heritable manner. These characteristics provide a vital position in the etiology of diseases. After several investigations, it is well understood that the epigenetic modifications are involved in not only many biological processes such as X-chromosome inactivation, genomic imprinting, RNA interference, and programming of the genome but also several disease like breast cancer. Today we realize that the accumulation of epigenetic modifications occurs in the development of breast cancer. In addition, the epigenetic modifications improve our knowledge about the biology and heterogeneity of breast cancer by large-scale methods. Therefore, the researchers focused on epigenetic alterations-based breast cancer therapy, and it is speculated that epigenetic modifications may be markers for breast cancer. It is likely that epigenetics-based therapy will become a reality in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    PubMed  Google Scholar 

  2. DeVita Jr VT, Lawrence TS, Rosenberg SA, DePinho RA, Weinberg RA. CANCER: principles & practice of oncology. Philadelphia: Lippincott, Williams & Wilkins; 2011.

    Google Scholar 

  3. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Lansdorp PM, Falconer E, Tao J, Brind’amour J, Naumann U. Epigenetic differences between sister chromatids? Ann N Y Acad Sci. 2012;1266(1):1–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    PubMed  CAS  Google Scholar 

  6. Carone DM, Lawrence JB. Heterochromatin instability in cancer: from the Barr body to satellites and the nuclear periphery. Semin Cancer Biol. 2013;23(2):99–108.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Barneda-Zahonero B, Parra M. Histone deacetylases and cancer. Mol Oncol. 2012. doi:10.1016/j.molonc.2012.07.003.

    PubMed  Google Scholar 

  8. Christinat A, Pagani O. Fertility after breast cancer. Maturitas. 2012. doi:10.1016/j.maturitas.2012.07.013.

    PubMed  Google Scholar 

  9. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    PubMed  CAS  Google Scholar 

  10. DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics. CA Cancer J Clin. 2011;61(6):409–18.

    PubMed  Google Scholar 

  11. Liedtke C, Kiesel L. Breast cancer molecular subtypes—modern therapeutic concepts for targeted therapy of a heterogeneous entity. Maturitas. 2012;73(4):288–94.

    PubMed  CAS  Google Scholar 

  12. Huynh KT, Chong KK, Greenberg ES, Hoon DS. Epigenetics of estrogen receptor-negative primary breast cancer. Expert Rev Mol Diagn. 2012;12(4):371–82.

    PubMed  CAS  Google Scholar 

  13. Meeran SM, Patel SN, Li Y, Shukla S, Tollefsbol TO. Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS One. 2012;7(5):e37748.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011;20(1):119–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Hatae J, Takami N, Lin H, Honda A, Inoue R. 17beta-Estradiol-induced enhancement of estrogen receptor biosynthesis via MAPK pathway in mouse skeletal muscle myoblasts. J Physiol Sci. 2009;59(3):181–90.

    PubMed  CAS  Google Scholar 

  16. Desmedt C, Voet T, Sotiriou C, Campbell PJ. Next-generation sequencing in breast cancer: first take home messages. Curr Opin Oncol. 2012;24(6):597–604.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Yang Z, Chevolot Y, Géhin T, Solassol J, Mange A, Souteyrand E, et al. Improvement of protein immobilization for the elaboration of tumor-associated antigen microarrays: application to the sensitive and specific detection of tumor markers from breast cancer sera. Biosens Bioelectron. 2013;40(1):385–92.

    PubMed  CAS  Google Scholar 

  18. Vo AT, Millis RM. Epigenetics and breast cancers. Obstet Gynecol Int. 2012;2012:602720.

    PubMed  PubMed Central  Google Scholar 

  19. Huang Y, Nayak S, Jankowitz R, Davidson NE, Oesterreich S. Epigenetics in breast cancer: what’s new? Breast Cancer Res. 2011;13(6):225.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Dedeurwaerder S, Fumagalli D, Fuks F. Unravelling the epigenomic dimension of breast cancers. Curr Opin Oncol. 2011;23(6):559–65.

    PubMed  Google Scholar 

  21. Hassler MR, Egger G. Epigenomics of cancer—emerging new concepts. Biochimie. 2012;94(11):2219–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Gerhauser C. Cancer chemoprevention and nutri-epigenetics: state of the art and future challenges. Top Curr Chem. 2012;329:73–132.

    Google Scholar 

  23. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008;266(1):6–11.

    PubMed  CAS  Google Scholar 

  24. Hatziapostolou M, Iliopoulos D. Epigenetic aberrations during oncogenesis. Cell Mol Life Sci. 2011;68(10):1681–702.

    PubMed  CAS  Google Scholar 

  25. Gigek CO, Chen ES, Calcagno DQ, Wisnieski F, Burbano RR, Smith MA. Epigenetic mechanisms in gastric cancer. Epigenomics. 2012;4(3):279–94.

    PubMed  CAS  Google Scholar 

  26. Catalano MG, Fortunati N, Boccuzzi G. Epigenetics modifications and therapeutic prospects in human thyroid cancer. Front Endocrinol (Lausanne). 2012;3:40.

    CAS  Google Scholar 

  27. Jerónimo C, Henrique R. Epigenetic biomarkers in urological tumors: a systematic review. Cancer Lett. 2014;342(2):264–74.

    PubMed  Google Scholar 

  28. Seeber LM, Van Diest PJ. Epigenetics in ovarian cancer. Methods Mol Biol. 2012;863:253–69.

    PubMed  CAS  Google Scholar 

  29. Liloglou T, Bediaga NG, Brown BR, Field JK, Davies MP. Epigenetic biomarkers in lung cancer. Cancer Lett. 2014;342(2):200–12.

    PubMed  CAS  Google Scholar 

  30. Kim WJ, Kim YJ. Epigenetics of bladder cancer. Methods Mol Biol. 2012;863:111–8.

    PubMed  CAS  Google Scholar 

  31. Khare S, Verma M. Epigenetics of colon cancer. Methods Mol Biol. 2012;863:177–85.

    PubMed  CAS  Google Scholar 

  32. Dubuc AM, Mack S, Unterberger A, Northcott PA, Taylor MD. The epigenetics of brain tumors. Methods Mol Biol. 2012;863:139–53.

    PubMed  CAS  Google Scholar 

  33. Gabay O, Sanchez C. Epigenetics, sirtuins and osteoarthritis. Joint Bone Spine. 2012;79(6):570–3.

    PubMed  CAS  Google Scholar 

  34. Udali S, Guarini P, Moruzzi S, Choi SW, Friso S. Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol Aspects Med. 2012. doi:10.1016/j.mam.2012.08.001.

    PubMed  Google Scholar 

  35. Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev. 2012;22(1):50–5.

    PubMed  CAS  Google Scholar 

  36. McPherson K, Steel CM, Dixon JM. ABC of breast diseases; breast cancer-epidemiology, risk factors, and genetics. BMJ. 2000;321(7261):624–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Nowsheen S, Aziz K, Tran PT, Gorgoulis VG, Yang ES, Georgakilas AG. Epigenetic inactivation of DNA repair in breast cancer. Cancer Lett. 2014;342(2):213–22.

    PubMed  CAS  Google Scholar 

  38. Connolly R, Stearns V. Epigenetics as a therapeutic target in breast cancer. J Mammary Gland Biol Neoplasia. 2012;17(3–4):191–204.

    PubMed  PubMed Central  Google Scholar 

  39. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Jones PA. DNA methylation and cancer. Cancer Res. 1986;46(2):461–6.

    PubMed  CAS  Google Scholar 

  42. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21(35):5400–13.

    PubMed  CAS  Google Scholar 

  43. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated CpG-rich DNA. Cell. 1985;40(1):91–9.

    PubMed  CAS  Google Scholar 

  44. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.

    PubMed  CAS  Google Scholar 

  45. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321(6067):209–13.

    PubMed  CAS  Google Scholar 

  46. Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427–40.

    PubMed  CAS  Google Scholar 

  47. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.

    PubMed  CAS  Google Scholar 

  48. Nguyen C, Liang G, Nguyen TT, Tsao-Wei D, Groshen S, Lübbert M, et al. Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J Natl Cancer Inst. 2001;93(19):1465–72.

    PubMed  CAS  Google Scholar 

  49. Ndlovu MN, Denis H, Fuks F. Exposing the DNA methylome iceberg. Trends Biochem Sci. 2011;36(7):381–7.

    PubMed  CAS  Google Scholar 

  50. Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet. 2011;20(4):670–80.

    PubMed  CAS  Google Scholar 

  51. Li Y, Zhu J, Tian G, Li N, Li Q, Ye M, et al. The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol. 2010;8(11):e1000533.

    PubMed  PubMed Central  Google Scholar 

  52. Robertson KD. DNA methylation and chromatin—unraveling the tangled web. Oncogene. 2002;21(35):5361–79.

    PubMed  CAS  Google Scholar 

  53. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69(6):915–26.

    PubMed  CAS  Google Scholar 

  54. Pedrali-Noy G, Weissbach A. Mammalian DNA methyltransferases prefer poly(dI-dC) as substrate. J Biol Chem. 1986;261(17):7600–2.

    PubMed  CAS  Google Scholar 

  55. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    PubMed  CAS  Google Scholar 

  56. Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem. 2012;81:97–117.

    PubMed  CAS  Google Scholar 

  57. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.

    PubMed  CAS  Google Scholar 

  58. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610.

    PubMed  CAS  Google Scholar 

  59. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33.

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.

    PubMed  CAS  Google Scholar 

  61. Arasaradnam RP, Commane DM, Bradburn D, Mathers JC. A review of dietary factors and its influence on DNA methylation in colorectal carcinogenesis. Epigenetics. 2008;3(4):193–8.

    PubMed  CAS  Google Scholar 

  62. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042–54.

    PubMed  CAS  Google Scholar 

  63. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010;70:27–56.

    PubMed  Google Scholar 

  66. Su LJ. Diet, epigenetics, and cancer. Methods Mol Biol. 2012;863:377–93.

    PubMed  CAS  Google Scholar 

  67. Fraga MF, Herranz M, Espada J, Ballestar E, Paz MF, Ropero S, et al. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res. 2004;64(16):5527–34.

    PubMed  CAS  Google Scholar 

  68. Christensen BC, Kelsey KT, Zheng S, Houseman EA, Marsit CJ, Wrensch MR, et al. Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet. 2010;6(7):e1001043.

    PubMed  PubMed Central  Google Scholar 

  69. Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, et al. Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res. 2011;71:2988–99.

    PubMed  CAS  Google Scholar 

  70. Faryna M, Konermann C, Aulmann S, Bermejo JL, Brugger M, Diederichs S, et al. Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB. 2012;J26(12):4937–50.

    Google Scholar 

  71. Botla SK, Moghaddas Gholami A, Malekpour M, Moskalev EA, Fallah M, Jandaghi P, et al. Diagnostic values of GHSR DNA methylation pattern in breast cancer. Breast Cancer Res Treat. 2012;135(3):705–13.

    PubMed  CAS  Google Scholar 

  72. Holm K, Hegardt C, Staaf J, Vallon-Christersson J, Jönsson G, Olsson H, et al. Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res. 2010;12:R36.

    PubMed  PubMed Central  Google Scholar 

  73. Killian JK, Bilke S, Davis S, Walker RL, Jaeger E, Killian MS, et al. A methyl-deviator epigenotype of estrogen receptor-positive breast carcinoma is associated with malignant biology. Am J Pathol. 2011;179:55–65.

    PubMed  PubMed Central  Google Scholar 

  74. Li L, Lee KM, Han W, Choi JY, Lee JY, Kang GH, et al. Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet. 2010;19:4273–7.

    PubMed  CAS  Google Scholar 

  75. Ronneberg JA, Fleischer T, Solvang HK, Nordgard SH, Edvardsen H, Potapenko I, et al. Methylation profiling with a panel of cancer related genes: association with estrogen receptor, TP53 mutation status and expression subtypes in sporadic breast cancer. Mol Oncol. 2011;5:61–76.

    PubMed  CAS  Google Scholar 

  76. Sun Z, Asmann YW, Kalari KR, Bot B, Eckel-Passow JE, Baker TR, et al. Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing. PLoS One. 2011;6:e17490.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, et al. MicroRNA cluster 221-222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst. 2010;102(10):706–21.

    PubMed  PubMed Central  Google Scholar 

  78. Lapidus RG, Nass SJ, Butash KA, Parl FF, Weitzman SA, Graff JG, et al. Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res. 1998;58(12):2515–9.

    PubMed  CAS  Google Scholar 

  79. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 1994;54(10):2552–5.

    PubMed  CAS  Google Scholar 

  80. Ferguson AT, Lapidus RG, Baylin SB, Davidson NE. Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res. 1995;55(11):2279–83.

    PubMed  CAS  Google Scholar 

  81. Yan L, Nass SJ, Smith D, Nelson WG, Herman JG, Davidson NE. Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-alpha (ER) in ER-negative human breast cancer cell lines. Cancer Biol Ther. 2003;2(5):552–6.

    Google Scholar 

  82. Shi JF, Li XJ, Si XX, Li AD, Ding HJ, Han X, et al. ERα positively regulated DNMT1 expression by binding to the gene promoter region in human breast cancer MCF-7 cells. Biochem Biophys Res Commun. 2012;427(1):47–53.

    PubMed  CAS  Google Scholar 

  83. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase. Nat Rev Mol Cell Biol. 2004;5(10):792–804.

    PubMed  CAS  Google Scholar 

  85. Wang H, Yang ES, Jiang J, Nowsheen S, Xia F. DNA damage-induced cytotoxicity is dissociated from BRCA1’s DNA repair function but is dependent on its cytosolic accumulation. Cancer Res. 2010;70(15):6258–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Jiang J, Yang ES, Jiang G, Nowsheen S, Wang H, Wang T, et al. p53-dependent BRCA1 nuclear export controls cellular susceptibility to DNA damage. Cancer Res. 2011;71(16):5546–57.

    PubMed  CAS  Google Scholar 

  87. Feng Z, Kachnic L, Zhang J, Powell SN, Xia F. DNA damage induces p53-dependent BRCA1 nuclear export. J Biol Chem. 2004;279(27):28574–84.

    PubMed  CAS  Google Scholar 

  88. King MC, Marks JH, Mandell JB, New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.

    PubMed  CAS  Google Scholar 

  89. Graeser MK, Engel C, Rhiem K, Gadzicki D, Bick U, Kast K, et al. Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2009;27(35):5887–92.

    PubMed  Google Scholar 

  90. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92(7):564–9.

    PubMed  CAS  Google Scholar 

  91. Marsit CJ, Liu M, Nelson HH, Posner M, Suzuki M, Kelsey KT. Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene. 2004;23(4):1000–4.

    PubMed  CAS  Google Scholar 

  92. Girault I, Tozlu S, Lidereau R, Bièche I. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res. 2003;9(12):4415–22.

    PubMed  CAS  Google Scholar 

  93. Butcher DT, Rodenhiser DI. Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours. Eur J Cancer. 2007;43(1):210–9.

    PubMed  CAS  Google Scholar 

  94. Ben Gacem R, Hachana M, Ziadi S, Ben Abdelkarim S, Hidar S, Trimeche M. Clinicopathologic significance of DNA methyltransferase 1, 3a, and 3b overexpression in Tunisian breast cancers. Hum Pathol. 2012;43(10):1731–8.

    PubMed  CAS  Google Scholar 

  95. Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009;23(6):1019–28.

    PubMed  CAS  Google Scholar 

  96. Billam M, Sobolewski MD, Davidson NE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res Treat. 2010;120(3):581–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Sharma G, Mirza S, Parshad R, Srivastava A, Datta Gupta S, Pandya P, et al. CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients. Clin Biochem. 2010;43(4–5):373–9.

    PubMed  CAS  Google Scholar 

  98. Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 2012;22(2):246–58.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Kornegoor R, Moelans CB, Verschuur-Maes AH, Hogenes MC, de Bruin PC, Oudejans JJ, et al. Promoter hypermethylation in male breast cancer: analysis by multiplex ligation-dependent probe amplification. Breast Cancer Res. 2012;14(4):R101.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle t 2.8 A resolution. Nature. 1997;389(6648):251–60.

    PubMed  CAS  Google Scholar 

  101. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    PubMed  CAS  Google Scholar 

  102. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304.

    PubMed  CAS  Google Scholar 

  103. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    PubMed  CAS  Google Scholar 

  104. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A. 1964;51:786–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    PubMed  CAS  Google Scholar 

  106. Lee JS, Smith E, Shilatifard A. The language of histone crosstalk. Cell. 2010;142(5):682–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell. 2009;138(6):1122–36.

    PubMed  CAS  Google Scholar 

  108. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138(5):1019–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Wolffe AP, Hayes JJ. Chromatin disruption and modification. Nucleic Acids Res. 1999;27(3):711–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Gardner KE, Allis CD, Strahl BD. Operating on chromatin, a colorful language where context matters. J Mol Biol. 2011;409(1):36–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Sawan C, Herceg Z. Histone modifications and cancer. Adv Genet. 2010;70:57–85.

    PubMed  CAS  Google Scholar 

  112. Füllgrabe J, Kavanagh E, Joseph B. Histone onco-modifications. Oncogene. 2011;30(31):3391–403.

    PubMed  Google Scholar 

  113. Munshi A, Shafi G, Aliya N, Jyothy A. Histone modifications dictate specific biological readouts. J Genet Genomics. 2009;36(2):75–88.

    PubMed  CAS  Google Scholar 

  114. Fu S, Kurzrock R. Development of curcumin as an epigenetic agent. Cancer. 2010;116(20):4670–6.

    PubMed  CAS  Google Scholar 

  115. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996;384(6610):641–3.

    PubMed  CAS  Google Scholar 

  116. Hodawadekar SC, Marmorstein R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene. 2007;26(37):5528–40.

    PubMed  CAS  Google Scholar 

  117. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Arts J, de Schepper S, Van Emelen K. Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics. Curr Med Chem. 2003;22:2343–50.

    Google Scholar 

  119. Prince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res. 2009;15(12):3958–69.

    PubMed  CAS  Google Scholar 

  120. Huang X, Wang S, Lee CK, Yang X, Liu B. HDAC inhibitor SNDX-275 enhances efficacy of trastuzumab in erbB2-overexpressing breast cancer cells and exhibits potential to overcome trastuzumab resistance. Cancer Lett. 2011;307(1):72–9.

    PubMed  CAS  Google Scholar 

  121. Campagna-Slater V, Mok MW, Nguyen KT, Feher M, Najmanovich R, Schapira M. Structural chemistry of the histone methyltransferases cofactor binding site. J Chem Inf Model. 2011;51(3):612–23.

    PubMed  CAS  Google Scholar 

  122. Lee YH, Stallcup MR. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol. 2009;23(4):425–33.

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.

    PubMed  CAS  Google Scholar 

  124. Mosammaparast N, Shi Y. (Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem. 2010;79:155–79.

    PubMed  CAS  Google Scholar 

  125. Varier RA, Timmers HT. Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta. 2011;1815(1):75–89.

    PubMed  CAS  Google Scholar 

  126. Tsang DP, Cheng AS. Epigenetic regulation of signaling pathways in cancer: role of the histone methyltransferase EZH2. J Gastroenterol Hepatol. 2011;26(1):19–27.

    PubMed  CAS  Google Scholar 

  127. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298(5595):1039–43.

    PubMed  CAS  Google Scholar 

  128. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;647(1–2):21–9.

    PubMed  CAS  Google Scholar 

  129. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–9.

    PubMed  CAS  Google Scholar 

  130. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24(2):268–73.

    PubMed  CAS  Google Scholar 

  131. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A. 2003;100(20):11606–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Croonquist PA, Van Ness B. The polycomb group protein enhancer of zeste homolog 2 (EZH 2) is an oncogene that influences myeloma cell growth and the mutant ras phenotype. Oncogene. 2005;24(41):6269–80.

    PubMed  CAS  Google Scholar 

  133. Chase A, Cross NC. Aberrations of EZH2 in cancer. Clin Cancer Res. 2011;17(9):2613–8.

    PubMed  CAS  Google Scholar 

  134. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tönnissen ER, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42(8):665–7.

    PubMed  CAS  Google Scholar 

  135. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer. 2010;1(3):146–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Gonzalez ME, DuPrie ML, Krueger H, Merajver SD, Ventura AC, Toy KA, et al. Histone methyltransferase EZH2 induces Akt-dependent genomic instability and BRCA1 inhibition in breast cancer. Cancer Res. 2011;71(6):2360–70.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest. 2012;122(4):1469–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Purcell DJ, Jeong KW, Bittencourt D, Gerke DS, Stallcup MR. A distinct mechanism for coactivator versus corepressor function by histone methyltransferase G9a in transcriptional regulation. J Biol Chem. 2011;286(49):41963–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  140. Zhou Z, Thomsen R, Kahns S, Nielsen AL. The NSD3L histone methyltransferase regulates cell cycle and cell invasion in breast cancer cells. Biochem Biophys Res Commun. 2010;398(3):565–70.

    PubMed  CAS  Google Scholar 

  141. Bedford MT. Arginine methylation at a glance. J Cell Sci. 2007;120(Pt 24):4243–6.

    PubMed  CAS  Google Scholar 

  142. Le Romancer M, Treilleux I, Leconte N, Robin-Lespinasse Y, Sentis S, Bouchekioua-Bouzaghou K, et al. Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol Cell. 2008;31(2):212–21.

    PubMed  Google Scholar 

  143. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.

    PubMed  CAS  Google Scholar 

  144. Hayami S, Kelly JD, Cho HS, Yoshimatsu M, Unoki M, Tsunoda T, et al. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer. 2011;128(3):574–86.

    PubMed  CAS  Google Scholar 

  145. Rotili D, Mai A. Targeting histone demethylases: a new avenue for the fight against cancer. Genes Cancer. 2011;2(6):663–79.

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Lim S, Janzer A, Becker A, Zimmer A, Schüle R, Buettner R, et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis. 2010;31(3):512–20.

    PubMed  CAS  Google Scholar 

  147. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell. 2009;138(4):660–72.

    PubMed  CAS  Google Scholar 

  148. Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP, et al. Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene. 2009;28(50):4491–500.

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell. 2007;25(6):801–12.

    PubMed  CAS  Google Scholar 

  150. Shi L, Sun L, Li Q, Liang J, Yu W, Yi X, et al. Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc Natl Acad Sci U S A. 2011;108(18):7541–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Kawazu M, Saso K, Tong KI, McQuire T, Goto K, Son DO, et al. Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS One. 2011;6(3):e17830.

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, et al. p53 is regulated by the lysine demethylase LSD1. Nature. 2007;449(7158):105–8.

    PubMed  CAS  Google Scholar 

  153. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet. 2009;41(1):125–9.

    PubMed  CAS  Google Scholar 

  154. Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol. 2009;41(1):87–95.

    PubMed  CAS  Google Scholar 

  155. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    PubMed  CAS  Google Scholar 

  156. Meltzer PS. Cancer genomics: small RNAs with big impacts. Nature. 2005;435(7043):745–6.

    PubMed  CAS  Google Scholar 

  157. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34.

    PubMed  CAS  Google Scholar 

  158. Chen H, Hardy TM, Tollefsbol TO. Epigenomics of ovarian cancer and its chemoprevention. Front Genet. 2011;2:67.

    PubMed  PubMed Central  Google Scholar 

  159. Brait M, Sidransky D. Cancer epigenetics: above and beyond. Toxicol Mech Methods. 2011;21(4):275–88.

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    PubMed  CAS  Google Scholar 

  161. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.

    PubMed  CAS  Google Scholar 

  162. Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P, et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res. 2011;71(13):4443–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Davoren PA, McNeill RE, Lowery AJ, Kerin MJ, Miller N. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol Biol. 2008;9:76.

    PubMed  PubMed Central  Google Scholar 

  164. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    PubMed  CAS  Google Scholar 

  165. O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010;12(2):201.

    PubMed  PubMed Central  Google Scholar 

  166. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57(1):84–91.

    PubMed  CAS  Google Scholar 

  167. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283(2):1026–33.

    PubMed  CAS  Google Scholar 

  168. Peto R, Davies C, Godwin J, Gray R, Pan HC, Clarke M, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379:432–44.

    PubMed  CAS  Google Scholar 

  169. Visvanathan K, Sukumar S, Davidson NE. Epigenetic biomarkers and breast cancer: cause for optimism. Clin Cancer Res. 2006;12(22):6591–3.

    PubMed  CAS  Google Scholar 

  170. Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res. 2000;60(16):4346–8.

    PubMed  CAS  Google Scholar 

  171. Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007;21(5):1132–47.

    PubMed  CAS  Google Scholar 

  172. Leivonen SK, Mäkelä R, Ostling P, Kohonen P, Haapa-Paananen S, Kleivi K, et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogenen. 2009;28(44):3926–36.

    CAS  Google Scholar 

  173. Mirza S, Sharma G, Prasad CP, Parshad R, Srivastava A, Gupta SD, et al. Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sci. 2007;81(4):280–7.

    PubMed  CAS  Google Scholar 

  174. Heyn H, Engelmann M, Schreek S, Ahrens P, Lehmann U, Kreipe H, et al. MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int J Cancer. 2011;129(12):2797–806.

    PubMed  CAS  Google Scholar 

  175. Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci. 2007;120(Pt 18):3163–72.

    PubMed  CAS  Google Scholar 

  176. Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. Dis Markers. 2007;23(1–2):73–87.

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Sebova K, Zmetakova I, Bella V, Kajo K, Stankovicova I, Kajabova V, et al. Cancer Biomark. 2011;10(1):13–26.

    PubMed  CAS  Google Scholar 

  178. Jiang Y, Cui L, Chen WD, Shen SH, Ding LD. The prognostic role of RASSF1A promoter methylation in breast cancer: a meta-analysis of published data. PLoS One. 2012;7(5):e36780.

    PubMed  CAS  PubMed Central  Google Scholar 

  179. Fujii S, Ito K, Ito Y, Ochiai A. Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem. 2008;283(25):17324–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  180. Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A, et al. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res. 2006;12(4):1168–74.

    PubMed  CAS  Google Scholar 

  181. Pal B, Bouras T, Shi W, Vaillant F, Sheridan JM, Fu N, et al. Global changes in the mammary epigenome are induced by hormonal cues and coordinated by Ezh2. Cell Rep. 2013. doi:10.1016/j.celrep.2012.12.020.

    PubMed Central  Google Scholar 

  182. Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26(21):8191–201.

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182(3):509–17.

    PubMed  CAS  PubMed Central  Google Scholar 

  184. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14(11):2348–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Morita S, Takahashi RU, Yamashita R, Toyoda A, Horii T, Kimura M, et al. Genome-wide analysis of DNA methylation and expression of microRNAs in breast cancer cells. Int J Mol Sci. 2012;13(7):8259–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  186. Laird PW. Cancer epigenetics. Hum Mol Genet. 2005;14(Spec No 1):R65–76.

    PubMed  CAS  Google Scholar 

  187. Stearns V, Zhou Q, Davidson NE. Epigenetic regulation as a new target for breast cancer therapy. Cancer Invest. 2007;8:659–65.

    Google Scholar 

  188. Krusche CA, Wülfing P, Kersting C, Vloet A, Böcker W, Kiesel L, et al. Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat. 2005;90(1):15–23.

    PubMed  CAS  Google Scholar 

  189. Zhang Z, Yamashita H, Toyama T, Sugiura H, Omoto Y, Ando Y, et al. HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res. 2004;10(20):6962–8.

    PubMed  CAS  Google Scholar 

  190. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res. 2001;61(23):8492–7.

    PubMed  CAS  Google Scholar 

  191. Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, et al. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer. 2011;104(12):1828–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Sharma D, Saxena NK, Davidson NE, Vertino PM. Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res. 2006;66(12):6370–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  193. Fan J, Yin WJ, Lu JS, Wang L, Wu J, Wu FY, et al. ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol. 2008;134(8):883–90.

    PubMed  CAS  Google Scholar 

  194. Zhou Q, Atadja P, Davidson NE. Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biol Ther. 2007;6(1):64–9.

    PubMed  CAS  Google Scholar 

  195. Keen JC, Yan L, Mack KM, Pettit C, Smith D, Sharma D, et al. A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res Treat. 2003;81(3):177–86.

    PubMed  CAS  Google Scholar 

  196. Yang X, Ferguson AT, Nass SJ, Phillips DL, Butash KA, Wang SM, et al. Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 2000;60(24):6890–4.

    PubMed  CAS  Google Scholar 

  197. Gauthier N, Caron M, Pedro L, Arcand M, Blouin J, Labonté A, et al. Development of homogeneous nonradioactive methyltransferase and demethylase assays targeting histone H3 lysine 4. J Biomol Screen. 2012;17(1):49–58.

    PubMed  CAS  Google Scholar 

  198. Islam AB, Richter WF, Jacobs LA, Lopez-Bigas N, Benevolenskaya EV. Co-regulation of histone-modifying enzymes in cancer. PLoS One. 2011;6(8):e24023.

    PubMed  CAS  PubMed Central  Google Scholar 

  199. Patani N, Jiang WG, Newbold RF, Mokbel K. Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer. Anticancer Res. 2011;31(12):4115–25.

    PubMed  CAS  Google Scholar 

  200. Kutanzi KR, Yurchenko OV, Beland FA, Checkhun VF, Pogribny IP. MicroRNA-mediated drug resistance in breast cancer. Clin Epigenetics. 2011;2(2):171–85.

    PubMed  CAS  PubMed Central  Google Scholar 

  201. Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 2011;30(9):1082–97.

    PubMed  CAS  PubMed Central  Google Scholar 

  202. Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H, et al. High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci U S A. 2000;97(11):6049–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  203. Mirza S, Sharma G, Parshad R, Srivastava A, Gupta SD, Ralhan R. Clinical significance of Stratifin, ERalpha and PR promoter methylation in tumor and serum DNA in Indian breast cancer patients. Clin Biochem. 2010;43(4–5):380–6.

    PubMed  CAS  Google Scholar 

  204. Martínez-Galán J, Torres B, Del Moral R, Muñoz-Gámez JA, Martín-Oliva D, Villalobos M, et al. Quantitative detection of methylated ESR1 and 14-3-3-sigma gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biol Ther. 2008;7(6):958–65.

    PubMed  Google Scholar 

  205. Dammann R, Yang G, Pfeifer GP. Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res. 2001;61(7):3105–9.

    PubMed  CAS  Google Scholar 

  206. Jin Z, Tamura G, Tsuchiya T, Sakata K, Kashiwaba M, Osakabe M, et al. Adenomatous polyposis coli (APC) gene promoter hypermethylation in primary breast cancers. Br J Cancer. 2001;85(1):69–73.

    PubMed  CAS  PubMed Central  Google Scholar 

  207. Dulaimi E, Hillinck J, Ibanez de Caceres I, Al-Saleem T, Cairns P. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res. 2004;10(18 Pt 1):6189–93.

    PubMed  CAS  Google Scholar 

  208. Sirchia SM, Ferguson AT, Sironi E, Subramanyan S, Orlandi R, Sukumar S, et al. Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor beta2 promoter in breast cancer cells. Oncogene. 2000;19(12):1556–63.

    PubMed  CAS  Google Scholar 

  209. Shukla S, Mirza S, Sharma G, Parshad R, Gupta SD, Ralhan R. Detection of RASSF1A and RARbeta hypermethylation in serum DNA from breast cancer patients. Epigenetics. 2006;1(2):88–93.

    PubMed  Google Scholar 

  210. Papadopoulou E, Davilas E, Sotiriou V, Georgakopoulos E, Georgakopoulou S, Koliopanos A, et al. Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Ann N Y Acad Sci. 2006;1075:235–43.

    PubMed  CAS  Google Scholar 

  211. Taback B, Giuliano AE, Lai R, Hansen N, Singer FR, Pantel K, et al. Epigenetic analysis of body fluids and tumor tissues: application of a comprehensive molecular assessment for early-stage breast cancer patients. Ann N Y Acad Sci. 2006;1075:211–21.

    PubMed  CAS  Google Scholar 

  212. Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST, Vertino PM. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res. 2000;60(22):6236–42.

    PubMed  CAS  Google Scholar 

  213. Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B, et al. Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res. 2001;61(6):2782–7.

    PubMed  CAS  Google Scholar 

  214. Sharma G, Mirza S, Prasad CP, Srivastava A, Gupta SD, Ralhan R. Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci. 2007;80(20):1873–81.

    PubMed  CAS  Google Scholar 

  215. Shinozaki M, Hoon DS, Giuliano AE, Hansen NM, Wang HJ, Turner R, et al. Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res. 2005;11(6):2156–62.

    PubMed  CAS  Google Scholar 

  216. Caldeira JR, Prando EC, Quevedo FC, Neto FA, Rainho CA, Rogatto SR. CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer. 2006;6:48.

    PubMed  PubMed Central  Google Scholar 

  217. Silva JM, Dominguez G, Villanueva MJ, Gonzalez R, Garcia JM, Corbacho C, et al. Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br J Cancer. 1999;80(8):1262–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  218. Hu XC, Wong IH, Chow LW. Tumor-derived aberrant methylation in plasma of invasive ductal breast cancer patients: clinical implications. Oncol Rep. 2003;10(6):1811–5.

    PubMed  CAS  Google Scholar 

  219. Toyooka KO, Toyooka S, Virmani AK, Sathyanarayana UG, Euhus DM, Gilcrease M, et al. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res. 2001;61(11):4556–60.

    PubMed  CAS  Google Scholar 

  220. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE. Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res. 2006;8(4):R38.

    PubMed  PubMed Central  Google Scholar 

  221. Jing F, Zhang J, Tao J, Zhou Y, Jun L, Tang X, et al. Hypermethylation of tumor suppressor genes BRCA1, p16 and 14-3-3sigma in serum of sporadic breast cancer patients. Oncology. 2007;30(1–2):14–9.

    CAS  Google Scholar 

  222. Van der Auwera I, Elst HJ, Van Laere SJ, Maes H, Huget P, van Dam P, et al. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer. 2009;100(8):1277–86.

    PubMed  PubMed Central  Google Scholar 

  223. Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 1998;58(20):4515–8.

    PubMed  CAS  Google Scholar 

  224. Hoque MO, Feng Q, Toure P, Dem A, Critchlow CW, Hawes SE, et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol. 2006;24(26):4262–9.

    PubMed  CAS  Google Scholar 

  225. Vesuna F, Lisok A, Kimble B, Domek J, Kato Y, van der Groep P, et al. Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-α. Oncogene. 2012;31(27):3223–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  226. Bae YK, Shim YR, Choi JH, Kim MJ, Gabrielson E, Lee SJ, et al. Gene promoter hypermethylation in tumors and plasma of breast cancer patients. Cancer Res Treat. 2005;37(4):233–40.

    PubMed  PubMed Central  Google Scholar 

  227. Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M, et al. RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res. 2006;66(13):6512–20.

    PubMed  CAS  Google Scholar 

  228. Tan SH, Ida H, Lau QC, Goh BC, Chieng WS, Loh M, et al. Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol Rep. 2007;18(5):1225–30.

    PubMed  CAS  Google Scholar 

  229. Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P, et al. CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene. 2012. doi:10.1038/onc.2012.474.

    Google Scholar 

  230. Kim SJ, Kang HS, Chang HL, Jung YC, Sim HB, Lee KS, et al. Promoter hypomethylation of the N-acetyltransferase 1 gene in breast cancer. Oncol Rep. 2008;19(3):663–8.

    PubMed  CAS  Google Scholar 

  231. Pakneshan P, Szyf M, Farias-Eisner R, Rabbani SA. Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem. 2004;279(30):31735–44.

    PubMed  CAS  Google Scholar 

  232. Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, et al. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res. 2008;14(21):7138–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  233. Ramaswamy B, Fiskus W, Cohen B, Pellegrino C, Hershman DL, Chuang E, et al. Phase I–II study evidence for vorinostat-induced tubulin acetylation and Hsp90 inhibition in vivo. Breast Cancer Res Treat. 2012;132(3):1063–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  234. Chen S, Ye J, Kijima I, Evans D. The HDAC inhibitor LBH589 (panobinostat) is an inhibitory modulator of aromatase gene expression. Proc Natl Acad Sci U S A. 2010;107(24):11032–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  235. Rao R, Nalluri S, Kolhe R, Yang Y, Fiskus W, Chen J, et al. Treatment with panobinostat induces glucose-regulated protein 78 acetylation and endoplasmic reticulum stress in breast cancer cells. Mol Cancer Ther. 2010;9(4):942–52.

    PubMed  CAS  Google Scholar 

  236. Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME, et al. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res. 2012;14(3):R79.

    PubMed  CAS  PubMed Central  Google Scholar 

  237. Lee BI, Park SH, Kim JW, Sausville EA, Kim HT, Nakanishi O, et al. MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells. Cancer Res. 2001;61(3):931–4.

    PubMed  CAS  Google Scholar 

  238. Huang X, Gao L, Wang S, Lee CK, Ordentlich P, Liu B. HDAC inhibitor SNDX-275 induces apoptosis in erbB2-overexpressing breast cancer cells via down-regulation of erbB3 expression. Cancer Res. 2009;69(21):8403–11.

    PubMed  CAS  Google Scholar 

  239. Sabnis GJ, Goloubeva O, Chumsri S, Nguyen N, Sukumar S, Brodie AM. Functional activation of the estrogen receptor-α and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res. 2011;71(5):1893–903.

    PubMed  CAS  PubMed Central  Google Scholar 

  240. Hirokawa Y, Arnold M, Nakajima H, Zalcberg J, Maruta H. Signal therapy of breast cancers by the HDAC inhibitor FK228 that blocks the activation of PAK1 and abrogates the tamoxifen-resistance. Cancer Biol Ther. 2005;4(9):956–60.

    PubMed  CAS  Google Scholar 

  241. Jawed S, Kim B, Ottenhof T, Brown GM, Werstiuk ES, Niles LP. Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation. Eur J Pharmacol. 2007;560(1):17–22.

    PubMed  CAS  Google Scholar 

  242. Hodges-Gallagher L, Valentine CD, Bader SE, Kushner PJ. Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells. Breast Cancer Res Treat. 2007;105(3):297–309.

    PubMed  CAS  Google Scholar 

  243. Reid G, Métivier R, Lin CY, Denger S, Ibberson D, Ivacevic T, et al. Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene. 2005;24(31):4894–907.

    PubMed  CAS  Google Scholar 

  244. Mongan NP, Gudas LJ. Valproic acid, in combination with all-trans retinoic acid and 5-aza-2′-deoxycytidine, restores expression of silenced RARbeta2 in breast cancer cells. Mol Cancer Ther. 2005;4(3):477–86.

    PubMed  CAS  Google Scholar 

  245. Dyer ES, Paulsen MT, Markwart SM, Goh M, Livant DL, Ljungman M. Phenylbutyrate inhibits the invasive properties of prostate and breast cancer cell lines in the sea urchin embryo basement membrane invasion assay. Int J Cancer. 2002;101(5):496–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kursat Oguz Yaykasli PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Yaykasli, K.O., Kaya, E., Yaykasli, E. (2014). Epigenomics of Breast Cancer. In: Barh, D. (eds) Omics Approaches in Breast Cancer. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0843-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0843-3_5

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0842-6

  • Online ISBN: 978-81-322-0843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics