Skip to main content

Exhaled Volatile Organic Compounds as Noninvasive Markers in Breast Cancer

  • Chapter
  • First Online:
Omics Approaches in Breast Cancer

Abstract

Volatile organic compounds (VOCs) in exhaled breath are interesting candidates as breast cancer (BC) markers for malignancy, staging, histology, genotype, and distinction from other malignant and benign diseases. VOC BC markers can be derived either as BC-specific compounds by analytical chemistry or as collective breath prints by statistical treatment of the output of sensor arrays. Despite the great potential of applications in clinical diagnostics, only few studies for breath VOC BC markers have been done, and breath testing for BC has not yet left the realm of research and entered clinical practice, mainly due to lack of standardization of the experimental techniques. In this chapter, we will outline the vast potential of exhaled VOC as a novel class of molecular BC markers and describe the challenges on the way from bench to bedside. In this chapter, we provide a didactic approach to the state-of-the-art experimental techniques for breath collection, sample storage, analysis of the breath VOCs, and direct breath printing, and we present examples for applications of diagnosing BC by VOC profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lippman ME. Hematology and oncology. In: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J, editors. Harrison’s principles of internal medicine. 17th ed. New York: McGraw Hill; 2008.

    Google Scholar 

  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2002;100(7):3983–8.

    Article  Google Scholar 

  3. Lm A. Breast cancer diagnosis and screening. Am Fam Physician. 2000;62(3):596–602.

    Google Scholar 

  4. Ambrosone CB. Oxidants and antioxidants in breast cancer. Antioxid Redox Signal. 2000;2(4):903–17.

    Article  PubMed  CAS  Google Scholar 

  5. Gi M. The role of cytochrome P450 in tumour development and progression and its potential in therapy. J Pathol. 2000;192:418–26.

    Google Scholar 

  6. Watanabe M. Polymorphic CYP, genes and disease predisposition—what have the studies shown so far? Toxicol Lett. 1998;102–103:167–71.

    Article  PubMed  Google Scholar 

  7. Chen S. Aromatase and breast cancer. Front Biosci. 1998;6(3):d922–33.

    Google Scholar 

  8. Hakim M, Broza YY, Barash O, Peled N, Phillips M, Amann A, et al. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev. 2012;112:5949–66.

    Article  PubMed  CAS  Google Scholar 

  9. Oestreicher N, Lehman CD, Seger DJ, Buist DS, White E. The incremental contribution of clinical breast examination to invasive cancer detection in a mammography screening program. AJR Am J Roentgenol. 2005;184(2):428–32.

    Article  PubMed  Google Scholar 

  10. Baines CJ. Are there downsides to mammography screening? Breast J. 2005;11(Supp 1):S7–10.

    Article  PubMed  Google Scholar 

  11. Heywang-Kobrunner S, Hacker A, Sedlacek S. Advantages and disadvantages of mammography screening. Breast Care. 2011;6:199–207.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shuster G, Gallimidi Z, Reiss AH, Dovgolevsky E, Billan S, Abdah-Bortnyak R, et al. Classification of breast cancer precursors through exhaled breath. Breast Cancer Res Treat. 2011;126:791–6.

    Article  PubMed  Google Scholar 

  13. Hunt KK, Newman LA, Copeland EM, Bland KI. The breast. In: Brunicardi F, Andersen D, Billiar T, editors. Schwartz’s principles of surgery. 9th ed. New York: McGraw-Hill; 2009.

    Google Scholar 

  14. Peng G, Hakim M, Broza Y, Billan S, Abdah-Bortnyak R, Kuten A, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010;103:542–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. Volatile biomarkers in the breath of women with breast cancer. J Breath Res. 2010;4:026003.

    Article  PubMed  Google Scholar 

  16. Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, et al. Volatile markers of breast cancer in the breath. Breast J. 2003;9(3):184–91.

    Article  PubMed  Google Scholar 

  17. Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, et al. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat. 2006;99:19–21.

    Article  PubMed  CAS  Google Scholar 

  18. Hietanen E, Bartsch H, Béréziat JC, Camus AM, McClinton S, Eremin O, et al. Diet and oxidative stress in breast, colon and prostate cancer patients: a case-control study. Eur J Clin Nutr. 1994;48(8):575–86.

    PubMed  CAS  Google Scholar 

  19. Mangler M, Freitag C, Lanowska M, Staeck O, Schneider A, Speiser D. Volatile organic compounds (VOCs) in exhaled breath of patients with breast cancer in a clinical setting. Ginekol Pol. 2012;83:730–6.

    PubMed  Google Scholar 

  20. Barash O, Peled N, Tisch U, Bunn PA, Hirsch FR, Haick H. Classification of the lung cancer histology by gold nanoparticle sensors. Nanomedicine. 2012;8(5):580–9.

    Article  PubMed  CAS  Google Scholar 

  21. Barash O, Peled N, Hirsch FR, Haick H. Sniffing the unique ‘odor print’ of non-small-cell lung cancer with gold nanoparticles. Small. 2009;5:2618–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Filipiak W, Sponring A, Mikoviny T, Ager C, Schubert J, Miekisch W, et al. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int. 2008;8(8):17.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sponring A, Filipiak W, Ager C, Schubert J, Miekisch W, Amann A, et al. Analysis of volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells. Cancer Biomark. 2010;7:153–61.

    PubMed  CAS  Google Scholar 

  24. Sponring A, Filipiak W, Mikoviny T, Ager C, Schubert J, Miekisch W, et al. Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Res. 2009;29:419–26.

    PubMed  CAS  Google Scholar 

  25. Brunner C, Szymczak W, Höllriegl V, Mörtl S, Oelmez H, Bergner A, et al. Discrimination of cancerous and non-cancerous cell lines by headspace-analysis with PTR-MS. Anal Bioanal Chem. 2010;397:2315–24.

    Article  PubMed  CAS  Google Scholar 

  26. Sulé-Suso J, Pysanenko A, Špan lP, Smith D. Quantification of acetaldehyde and carbon dioxide in the headspace of malignant and non-malignant lung cells in vitro by SIFT-MS. Analyst. 2009;134:2419–25.

    Article  PubMed  Google Scholar 

  27. Patel M, Lu L, Zander DS, Sreerama L, Coco D, Moreb JS. ALDH1A1 and ALDH3A1 expression in lung cancers: correlation with histologic type and potential precursors. Lung Cancer. 2008;59:340–9.

    Article  PubMed  Google Scholar 

  28. Smith D, Wang T, Sulé-Suso J, Spanel P, El Haj A. Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:845–50.

    Article  PubMed  CAS  Google Scholar 

  29. Deng C, Zhang X, Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;808(2):269–77.

    Article  PubMed  CAS  Google Scholar 

  30. Tisch U, Haick H. Arrays of chemisensitive monolayer-capped metallic nanoparticles for diagnostic breath testing. Rev Chem Eng. 2010;26:171–9.

    Article  CAS  Google Scholar 

  31. Amann A, Ligor M, Ligor T, Bajtarevic A, Ager C, Pienz M, et al. Analysis of exhaled breath for screening of lung cancer patients. Memo. 2010;3:106–12.

    Article  Google Scholar 

  32. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotech. 2009;4:669–73. PubMed PMID: 19809459.

    Article  CAS  Google Scholar 

  33. Peng G, Tisch U, Haick H. Detection of nonpolar molecules by means of carrier scattering in random networks of carbon nanotubes: toward diagnosis of diseases via breath samples. Nano Lett. 2009;9:1362–8.

    Article  PubMed  CAS  Google Scholar 

  34. Peng G, Trock E, Haick H. Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with non-polymeric organic materials. Nano Lett. 2008;8:3631–5.

    Article  PubMed  CAS  Google Scholar 

  35. Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res. 2005;6:71.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wehinger A, Schmid A, Mechtcheriakov S, Ledochowski M, Grabmer C, Gastl GA, et al. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. Int J Mass Spectrom. 2007;265(1):49–59.

    Article  CAS  Google Scholar 

  37. Cao W, Duan Y. Current status of methods and techniques for breath analysis. Crit Rev Anal Chem. 2007;37(1):3–13.

    Article  CAS  Google Scholar 

  38. Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M, et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer. 2009;9:348.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Buszewski B, Kesy M, Ligor T, Amann A. Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr. 2007;21(6):553–66.

    Article  PubMed  CAS  Google Scholar 

  40. Horvath L, Lazar Z, Gyulai N, Kollai M, Losonczy G. Exhaled biomarkers in lung cancer. Eur Respir J. 2009;34:261–75.

    Article  PubMed  CAS  Google Scholar 

  41. Kischkel S, Miekisch W, Sawacki A, Straker EM, Trefz P, Amann A, et al. Breath biomarkers for lung cancer detection and assessment of smoking related effects—confounding variables, influence of normalization and statistical algorithms. Clin Chim Acta. 2010;411:1637–44.

    Article  PubMed  CAS  Google Scholar 

  42. Mendis S, Sobotka PA, Euler DE. Pentane and isoprene in expired air from humans: gas-chromatographic analysis of single breath. Clin Chem. 1994;40:1485–8.

    PubMed  CAS  Google Scholar 

  43. Miekisch W, Schubert JK, Noeldge-Schomburg GFE. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta. 2004;347(1–2):25–39.

    Article  PubMed  CAS  Google Scholar 

  44. O'Neill HJ, Gordon SM, O'Neill MH, Gibbons RD, Szidon JP. A computerized classification technique for screening for the presence of breath biomarkers in lung cancer. Clin Chem. 1988;34(8):1613–8.

    PubMed  Google Scholar 

  45. Phillips M, Greenberg J, Awad J. Metabolic and environmental origins of volatile organic compounds in breath. J Clin Pathol. 1994;47(11):1052.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Amann A, Corradi M, Mazzone P, Mutti A. Lung cancer biomarkers in exhaled breath. Expert Rev Mol Diagn. 2011;11(2):207–17.

    Article  PubMed  CAS  Google Scholar 

  47. Phillips M, Cataneo RN, Cummin AR, Gagliardi AJ, Gleeson K, Greenberg J, et al. Detection of lung cancer with volatile markers in the breath. Chest. 2003;123(6):2115–23.

    Article  PubMed  CAS  Google Scholar 

  48. Filipiak W, Sponring A, Filipiak A, Ager C, Schubert J, Miekisch W, et al. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol Biomarkers Prev. 2010;19(1):182–95. PubMed PMID: 20056637.

    Article  PubMed  CAS  Google Scholar 

  49. Poli D, Goldoni M, Corradi M, Acampa O, Carbognani P, Internullo E, et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(27):2643–51.

    Article  PubMed  CAS  Google Scholar 

  50. Hakim M, Billan S, Tisch U, Peng G, Dvrokind I, Marom O, et al. Diagnosis of head-and-neck cancer from exhaled breath. Br J Cancer. 2011;104(10):1649–55.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Phillips M, Altorki N, Austin JHM, Cameron RB, Cataneo RN, Kloss R, et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin Chim Acta. 2008;393(2):76–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, O'Neill HJ. Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem. 1985;31(8):1278–82.

    PubMed  CAS  Google Scholar 

  53. Phillips M, Gleeson K, Hughes JM, Greenberg J, Cataneo RN, Baker L, et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet. 1999;353(9168):1930–3.

    Article  PubMed  CAS  Google Scholar 

  54. Tisch U, Billan S, Ilouze M, Phillips M, Peled N, Haick H. Volatile organic compounds in exhaled breath as biomarkers for the early detection and screening of lung cancer. CML-Lung Cancer. 2012;5(4):107–17.

    Google Scholar 

  55. King J, Mochalski P, Kupferthaler A, Unterkofler K, Filipiak W, Teschl S, et al. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol Meas. 2010;31:1169–84.

    Article  PubMed  CAS  Google Scholar 

  56. King J, Kupferthaler A, Frauscher B, Hackner H, Unterkofler K, Teschl G, et al. Measurement of endogenous acetone and isoprene in exhaled breath during sleep. Physiol Meas. 2012;33(3):413–28.

    Article  PubMed  Google Scholar 

  57. Amann A, Spanĕl P, Smith D. Breath analysis: the approach towards clinical applications. Mini Rev Med Chem. 2007;7(2):115–29.

    Article  PubMed  CAS  Google Scholar 

  58. Preti G, Labows JN, Kostelc JG, Aldinger S, Daniele R. Analysis of lung air from patients with bronchogenic carcinoma and controls using gas chromatography-mass spectrometry. J Chromatogr. 1988;432:1–11.

    Article  PubMed  CAS  Google Scholar 

  59. Anderson JC, Babb AL, Hlastala MP. Modeling soluble gas exchange in the airways and alveoli. Ann Biomed Eng. 2003;31:1402–22.

    Article  PubMed  Google Scholar 

  60. King J, Unterkofler K, Teschl G, Teschl S, Koc H, Hinterhuber H, et al. A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. J Math Biol. 2011;63:959–99.

    Article  PubMed  Google Scholar 

  61. Kalliomäki P-L, Korhonen O, Vaaranen V, Kalliomäki K, Koponen M. Lung retention and clearance of shipyard arc welders. Int Arch Occur Environ Health. 1978;42(2):83–90.

    Article  Google Scholar 

  62. Jakubowski M, Czerczak S. Calculating the retention of volatile organic compounds in the lung on the basis of their physicochemical properties. Environ Toxicol Pharmacol. 2009;28(2):311–5.

    Article  PubMed  CAS  Google Scholar 

  63. Lechner M, Moser B, Niederseer D, Karlseder A, Holzknecht B, Fuchs M, et al. Gender and age specific differences in exhaled isoprene levels. Respir Physiol Neurobiol. 2006;154(3):478–83.

    Article  PubMed  CAS  Google Scholar 

  64. Kushch I, Arendacká B, Štolc S, Mochalski P, Filipiak W, Schwarz K, et al. Breath isoprene–aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin Chem Lab Med. 2008;46(7):1011–8.

    Article  PubMed  CAS  Google Scholar 

  65. Pennazza G, Santonicoa M, Agròb AF. Narrowing the gap between breathprinting and disease diagnosis, a sensor perspective. Sens Actuators B. 2013;179:270–5 dx.doi.org/10.1016/j.snb.2012.09.103.

  66. Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature. 1982;299(5881):352–5.

    Article  PubMed  CAS  Google Scholar 

  67. Röck F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev. 2008;108(2):705–25.

    Article  PubMed  Google Scholar 

  68. Konvalina G, Haick H. Effect of humidity on nanoparticle-based chemiresistors: a comparison between synthetic and real-world samples. ACS Appl Mater Interfaces. 2012;4(1):317–25.

    Article  PubMed  CAS  Google Scholar 

  69. Amann A, Miekisch W, Pleil J, Risby T, Schubert J. Chapter 7: Methodological issues of sample collection and analysis of exhaled breath. Eur Respir Soc Monograph. 2010;49:96–114.

    Google Scholar 

  70. Phillips M. Method for the collection and assay of volatile organic compounds in breath. Anal Biochem. 1997;247:272–8.

    Article  PubMed  CAS  Google Scholar 

  71. Kneepkens CM, Lepage G, Roy CC. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radic Biol Med. 1994;17(2):127–60.

    Article  PubMed  CAS  Google Scholar 

  72. Tisch U, Haick H. Nanomaterials for cross-reactive sensor arrays. MRS Bull. 2010;35:797–803.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orna Barash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Barash, O., Haick, H. (2014). Exhaled Volatile Organic Compounds as Noninvasive Markers in Breast Cancer. In: Barh, D. (eds) Omics Approaches in Breast Cancer. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0843-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0843-3_23

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0842-6

  • Online ISBN: 978-81-322-0843-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics