Breast Cancer Biomarkers for Risk Assessment, Screening, Detection, Diagnosis, and Prognosis

Chapter

Abstract

Breast cancer mortality can be prevented if the disease is detected early. During the past decade, progress has been made in identifying invasive and noninvasive biomarkers. Genetic biomarkers are based on mutations and single nucleotide polymorphisms (SNPs) associated with breast cancer and have potential use in screening high-risk populations to identify individuals who are likely to develop this disease. Among epigenetic biomarkers, hypermethylation of selected genes and specific microRNA (miR) profiling can be used for cancer detection, diagnosis, and prognosis. This chapter also discusses other biomarkers, such as proteomics, imaging, and glycomics, as well as the advantages of noninvasive biomarkers as compared to invasive biomarkers. Also covered are new approaches to currently available technologies and assays to make them suitable for clinical use. The ultimate goal for detection is to identify (a) biomarkers that can be assayed in samples that are collected noninvasively, (b) assays that are not expensive, and (c) biomarkers that show high sensitivity and specificity.

Keywords

Biomarker Cancer Chromatin Diagnosis Early detection Epigenetics Genomic instability Histone Methylation MicroRNA Prognosis Proteomics Surveillance Validation 

References

  1. 1.
    Tang SS, Gui GP. Biomarkers in the diagnosis of primary and recurrent breast cancer. Biomark Med. 2012;6(5):567–85.PubMedGoogle Scholar
  2. 2.
    Ouyang G, Chen Y, Setkova L, Pawliszyn J. Calibration of solid-phase micro-extraction for quantitative analysis by gas chromatography. J Chromatogr A. 2005;1097(1–2):9–16.PubMedGoogle Scholar
  3. 3.
    Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360(8):790–800.PubMedGoogle Scholar
  4. 4.
    Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, et al. A pathway-based classification of human breast cancer. Proc Natl Acad Sci U S A. 2010;107(15):6994–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Desmedt C, Sotiriou C, Piccart-Gebhart MJ. Development and validation of gene expression profile signatures in early-stage breast cancer. Cancer Invest. 2009;27(1):1–10.PubMedGoogle Scholar
  6. 6.
    Lee SC, Xu X, Chng WJ, Watson M, Lim YW, Wong CI, et al. Post-treatment tumor gene expression signatures are more predictive of treatment outcomes than baseline signatures in breast cancer. Pharmacogenet Genomics. 2009;19(11):833–42.PubMedGoogle Scholar
  7. 7.
    Normanno N, De Luca A, Carotenuto P, Lamura L, Oliva I, D’Alessio A. Prognostic applications of gene expression signatures in breast cancer. Oncology. 2009;77 Suppl 1:2–8.PubMedGoogle Scholar
  8. 8.
    Tebbit CL, Zhai J, Untch BR, Ellis MJ, Dressman HK, Bentley RC, et al. Novel tumor sampling strategies to enable microarray gene expression signatures in breast cancer: a study to determine feasibility and reproducibility in the context of clinical care. Breast Cancer Res Treat. 2009;118(3):635–43.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Boeri L, Canzonieri C, Cagioni C, Ornati F, Danesino C. Breast cancer and genetics. J Ultrasound. 2011;14(4):171–6.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kirk R. Genetics: the crystal ball clears for breast cancer therapy? Nat Rev Clin Oncol. 2011;8(7):383.PubMedGoogle Scholar
  11. 11.
    Lindeman GJ, Visvader JE. Hereditary breast cancer genetics–from clinical curiosities to mainstream paradigms. J Mammary Gland Biol Neoplasia. 2011;16(1):1–2.PubMedGoogle Scholar
  12. 12.
    Hall P. Current knowledge and tomorrows challenges of breast, ovarian and prostate cancer genetics. J Intern Med. 2012;271(4):318–20.PubMedGoogle Scholar
  13. 13.
    Gayther SA, Song H, Ramus SJ, Kjaer SK, Whittemore AS, Quaye L, et al. Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. Cancer Res. 2007;67(7):3027–35.PubMedGoogle Scholar
  14. 14.
    Antoniou AC, Spurdle AB, Sinilnikova OM, Healey S, Pooley KA, Schmutzler RK, et al. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet. 2008;82(4):937–48.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Pharoah PD, Caldas C. Genetics: how to validate a breast cancer prognostic signature. Nat Rev Clin Oncol. 2010;7(11):615–6.PubMedGoogle Scholar
  16. 16.
    Jacobson DR, Fishman CL, Mills NE. Molecular genetic tumor markers in the early diagnosis and screening of non-small-cell lung cancer. Ann Oncol. 1995;6 Suppl 3:S3–8.PubMedGoogle Scholar
  17. 17.
    Wiest JS, Franklin WA, Drabkin H, Gemmill R, Sidransky D, Anderson MW. Genetic markers for early detection of lung cancer and outcome measures for response to chemoprevention. J Cell Biochem Suppl. 1997;28–29:64–73.PubMedGoogle Scholar
  18. 18.
    Oyama T, Osaki T, Baba T, Nagata Y, Mizukami M, So T, et al. Molecular genetic tumor markers in non-small cell lung cancer. Anticancer Res. 2005;25(2B):1193–6.PubMedGoogle Scholar
  19. 19.
    Chorostowska-Wynimko J, Szpechcinski A. The impact of genetic markers on the diagnosis of lung cancer: a current perspective. J Thorac Oncol. 2007;2(11):1044–51.PubMedGoogle Scholar
  20. 20.
    Li R, Todd NW, Qiu Q, Fan T, Zhao RY, Rodgers WH, et al. Genetic deletions in sputum as diagnostic markers for early detection of stage I non-small cell lung cancer. Clin Cancer Res. 2007;13(2 Pt 1):482–7.PubMedGoogle Scholar
  21. 21.
    Gill RK, Vazquez MF, Kramer A, Hames M, Zhang L, Heselmeyer-Haddad K, et al. The use of genetic markers to identify lung cancer in fine needle aspiration samples. Clin Cancer Res. 2008;14:7481–7.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Adams VR, Harvey RD. Histological and genetic markers for non-small-cell lung cancer: customizing treatment based on individual tumor biology. Am J Health Syst Pharm. 2010;67(1 Suppl 1):S3–9, quiz S15–16.PubMedGoogle Scholar
  23. 23.
    Ponomareva AA, Rykova E, Cherdyntseva NV, Choĭnzonov EL, Laktionov PP, Vlasov VV. Molecular-genetic markers in lung cancer diagnostics. Mol Biol (Mosk). 2011;45(2):203–17.Google Scholar
  24. 24.
    Arason A, Gunnarsson H, Johannesdottir G, Jonasson K, Bendahl PO, Gillanders EM, et al. Genome-wide search for breast cancer linkage in large Icelandic non-BRCA1/2 families. Breast Cancer Res. 2010;12(4):R50.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics. 2010;11:137.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010;42(6):504–7.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Li J, Humphreys K, Heikkinen T, Aittomäki K, Blomqvist C, Pharoah PD, et al. A combined analysis of genome-wide association studies in breast cancer. Breast Cancer Res Treat. 2011;126(3):717–27.PubMedGoogle Scholar
  28. 28.
    Politopoulos I, Gibson J, Tapper W, Ennis S, Eccles D, Collins A. Genome-wide association of breast cancer: composite likelihood with imputed genotypes. Eur J Hum Genet. 2011;19(2):194–9.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol. 2002;3(12):755–63.PubMedGoogle Scholar
  30. 30.
    Verma M. Viral genes and methylation. Ann N Y Acad Sci. 2003;983:170–80.PubMedGoogle Scholar
  31. 31.
    Verma M, Dunn BK, Ross S, Jain P, Wang W, Hayes R, et al. Early detection and risk assessment: proceedings and recommendations from the Workshop on Epigenetics in Cancer Prevention. Ann N Y Acad Sci. 2003;983:298–319.PubMedGoogle Scholar
  32. 32.
    Verma M, Maruvada P, Srivastava S. Epigenetics and cancer. Crit Rev Clin Lab Sci. 2004;41(5–6):585–607.PubMedGoogle Scholar
  33. 33.
    Agarwal R, Jin Z, Yang J, Mori Y, Song JH, Kumar S, et al. Epigenomic program of Barrett’s-associated neoplastic progression reveals possible involvement of insulin signaling pathways. Endocr Relat Cancer. 2012;19(1):L5–9.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Khare S, Verma M. Epigenetics of colon cancer. Methods Mol Biol. 2012;863:177–85.PubMedGoogle Scholar
  35. 35.
    Mishra A, Verma M. Epigenetics of solid cancer stem cells. Methods Mol Biol. 2012;863:15–31.PubMedGoogle Scholar
  36. 36.
    Verma M. Cancer control and prevention by nutrition and epigenetic approaches. Antioxid Redox Signal. 2012;17(2):355–64.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Verma M. Epigenetic biomarkers in cancer epidemiology. Methods Mol Biol. 2012;863:467–80.PubMedGoogle Scholar
  38. 38.
    Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology. 2006;147(6 Suppl):S43–9.PubMedGoogle Scholar
  39. 39.
    Anway MD, Skinner MK. Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online. 2008;16(1):23–5.PubMedGoogle Scholar
  40. 40.
    Berdasco M, Esteller M. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell. 2012;11(2):181–6.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Gómez-Díaz E, Jordà M, Peinado MA, Rivero A. Epigenetics of host-pathogen interactions: the road ahead and the road behind. PLoS Pathog. 2012;8(11):e1003007.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Singh S, Li SS. Epigenetic effects of environmental chemicals bisphenol a and phthalates. Int J Mol Sci. 2012;13(8):10143–53.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LG, et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med. 2011;3(75):75ra25.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Melichar B, Kroupis C. Cancer epigenomics: moving slowly, but at a steady pace from laboratory bench to clinical practice. Clin Chem Lab Med. 2012;50(10):1699–701.PubMedGoogle Scholar
  46. 46.
    Yi JM, Dhir M, Van Neste L, Downing SR, Jeschke J, Glöckner SC, et al. Genomic and epigenomic integration identifies a prognostic signature in colon cancer. Clin Cancer Res. 2011;17(6):1535–45.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Xing L, Todd NW, Yu L, Fang H, Jiang F. Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol. 2010;23(8):1157–64.PubMedGoogle Scholar
  48. 48.
    Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, et al. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer. 2010;127(12):2870–8.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD, et al. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull. 2003;29(1):169–78.PubMedGoogle Scholar
  50. 50.
    Harder A, Titze S, Herbst L, Harder T, Guse K, Tinschert S, et al. Monozygotic twins with neurofibromatosis type 1 (NF1) display differences in methylation of NF1 gene promoter elements, 5′ untranslated region, exon and intron 1. Twin Res Hum Genet. 2010;13(6):582–94.PubMedGoogle Scholar
  51. 51.
    Buchbinder D, Nadeau K, Nugent D. Monozygotic twin pair showing discordant phenotype for X-linked thrombocytopenia and Wiskott-Aldrich syndrome: a role for epigenetics? J Clin Immunol. 2011;31(5):773–7.PubMedGoogle Scholar
  52. 52.
    Ollikainen M, Craig JM. Epigenetic discordance at imprinting control regions in twins. Epigenomics. 2011;3(3):295–306.PubMedGoogle Scholar
  53. 53.
    Galetzka D, Hansmann T, El Hajj N, Weis E, Irmscher B, Ludwig M, et al. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer. Epigenetics. 2012;7(1):47–54.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Narod SA. Genes, the environment, and breast cancer. Lancet. 2010;375(9732):2123–4.PubMedGoogle Scholar
  55. 55.
    Travis RC, Reeves GK, Green J, Bull D, Tipper SJ, Baker K, et al. Gene-environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study. Lancet. 2010;375(9732):2143–51.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Song M, Lee KM, Kang D. Breast cancer prevention based on gene-environment interaction. Mol Carcinog. 2011;50(4):280–90.PubMedGoogle Scholar
  57. 57.
    Ashley-Martin J, VanLeeuwen J, Cribb A, Andreou P, Guernsey JR. Breast cancer risk, fungicide exposure and CYP1A1*2A gene-environment interactions in a province-wide case control study in Prince Edward Island, Canada. Int J Environ Res Public Health. 2012;9(5):1846–58.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Qiu J, Yang R, Rao Y, Du Y, Kalembo FW. Risk factors for breast cancer and expression of insulin-like growth factor-2 (IGF-2) in women with breast cancer in Wuhan City, China. PLoS One. 2012;7(5):e36497.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Zeeb H, Hammer GP, Blettner M. Epidemiological investigations of aircrew: an occupational group with low-level cosmic radiation exposure. J Radiol Prot. 2012;32(1):N15–9.PubMedGoogle Scholar
  60. 60.
    Zhang Z, Yamashita H, Toyama T, Sugiura H, Omoto Y, Ando Y, et al. HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res. 2004;10(20):6962–8.PubMedGoogle Scholar
  61. 61.
    Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S, et al. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene. 2005;24(28):4531–9.PubMedGoogle Scholar
  62. 62.
    Krusche CA, Wülfing P, Kersting C, Vloet A, Böcker W, Kiesel L, et al. Histone deacetylase-1 and −3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat. 2005;90(1):15–23.PubMedGoogle Scholar
  63. 63.
    Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K, et al. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat. 2005;94(1):11–6.PubMedGoogle Scholar
  64. 64.
    Shann YJ, Cheng C, Chiao CH, Chen DT, Li PH, Hsu MT. Genome-wide mapping and characterization of hypomethylated sites in human tissues and breast cancer cell lines. Genome Res. 2008;18(5):791–801.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Fackler MJ, Umbricht CB, Williams D, Argani P, Cruz LA, Merino VF, et al. Genome-wide methylation analysis identifies genes specific to breast cancer hormone receptor status and risk of recurrence. Cancer Res. 2011;71(19):6195–207.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, et al. Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res. 2011;71(8):2988–99.PubMedGoogle Scholar
  67. 67.
    Faryna M, Konermann C, Aulmann S, Bermejo JL, Brugger M, Diederichs S, et al. Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB J. 2012;26(12):4937–50.PubMedGoogle Scholar
  68. 68.
    Lee SE, Kim SJ, Yoon HJ, Yu SY, Yang H, Jeong SI, et al. Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J Pineal Res. 2013;54(1):80–8.PubMedGoogle Scholar
  69. 69.
    Morita S, Takahashi RU, Yamashita R, Toyoda A, Horii T, Kimura M, et al. Genome-wide analysis of DNA methylation and expression of microRNAs in breast cancer cells. Int J Mol Sci. 2012;13(7):8259–72.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Soares J, Pinto AE, Cunha CV, André S, Barão I, Sousa JM, et al. Global DNA hypomethylation in breast carcinoma: correlation with prognostic factors and tumor progression. Cancer. 1999;85(1):112–8.PubMedGoogle Scholar
  71. 71.
    Jackson K, Yu MC, Arakawa K, Fiala E, Youn B, Fiegl H, et al. DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther. 2004;3(12):1225–31.PubMedGoogle Scholar
  72. 72.
    Narayan A, Ji W, Zhang XY, Marrogi A, Graff JR, Baylin SB, et al. Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer. 1998;77(6):833–8.PubMedGoogle Scholar
  73. 73.
    Tjensvoll K, Svendsen KN, Reuben JM, Oltedal S, Gilje B, Smaaland R, et al. miRNA expression profiling for identification of potential breast cancer biomarkers. Biomarkers. 2012;17(5):463–70.PubMedGoogle Scholar
  74. 74.
    Vrba L, Munoz-Rodriguez JL, Stampfer MR, Futscher BW. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One. 2013;8(1):e54398.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ. Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br J Cancer. 2010;103(4):532–41.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014;33(6):679–89.Google Scholar
  78. 78.
    Panis C, Pizzatti L, Herrera AC, Cecchini R, Abdelhay E. Putative circulating markers of the early and advanced stages of breast cancer identified by high-resolution label-free proteomics. Cancer Lett. 2013;330(1):57–66.PubMedGoogle Scholar
  79. 79.
    Cirillo F, Nassa G, Tarallo R, Stellato C, De Filippo MR, Ambrosino C, et al. Molecular mechanisms of selective estrogen receptor modulator activity in human breast cancer cells: identification of novel nuclear cofactors of antiestrogen-ERα complexes by interaction proteomics. J Proteome Res. 2013;12(1):421–31.PubMedGoogle Scholar
  80. 80.
    Liu NQ, Braakman RB, Stingl C, Luider TM, Martens JW, Foekens JA, et al. Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue. J Mammary Gland Biol Neoplasia. 2012;17(2):155–64.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Fonseca-Sánchez MA, Rodríguez Cuevas S, Mendoza-Hernández G, Bautista-Piña V, Arechaga Ocampo E, Hidalgo Miranda A, et al. Breast cancer proteomics reveals a positive correlation between glyoxalase 1 expression and high tumor grade. Int J Oncol. 2012;41(2):670–80.PubMedGoogle Scholar
  82. 82.
    Gonzalez-Angulo AM, Hennessy BT, Meric-Bernstam F, Sahin A, Liu W, Ju Z, et al. Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer. Clin Proteomics. 2011;8(1):11.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Fabian CJ, Kimler BF, Brady DA, Mayo MS, Chang CH, Ferraro JA, et al. A phase II breast cancer chemoprevention trial of oral alpha-difluoromethylornithine: breast tissue, imaging, and serum and urine biomarkers. Clin Cancer Res. 2002;8(10):3105–17.PubMedGoogle Scholar
  84. 84.
    Xu H, Chen C, Liu CM, Peng J, Li Y, Zhang ZL, et al. The distribution analysis of the biomarkers on breast cancer tissues by Hadamard transform spectral microscopic imaging. Guang Pu Xue Yu Guang Pu Fen Xi. 2009;29(12):3216–9. Chinese.PubMedGoogle Scholar
  85. 85.
    Khalkhali I, Mena I, Diggles L. Review of imaging techniques for the diagnosis of breast cancer: a new role of prone scintimammography using technetium-99m sestamibi. Eur J Nucl Med. 1994;21(4):357–62.PubMedGoogle Scholar
  86. 86.
    Jiang H, Ramesh S, Bartlett M. Combined optical and fluorescence imaging for breast cancer detection and diagnosis. Crit Rev Biomed Eng. 2000;28(3–4):371–5.PubMedGoogle Scholar
  87. 87.
    Jiang H, Tao W, Zhang M, Pan S, Kanwar JR, Sun X. Low-dose metronomic paclitaxel chemotherapy suppresses breast tumors and metastases in mice. Cancer Invest. 2010;28(1):74–84.PubMedGoogle Scholar
  88. 88.
    Sentís M. Imaging diagnosis of young women with breast cancer. Breast Cancer Res Treat. 2010;123 Suppl 1:11–3.PubMedGoogle Scholar
  89. 89.
    Heijblom M, Klaase JM, van den Engh FM, van Leeuwen TG, Steenbergen W, Manohar S. Imaging tumor vascularization for detection and diagnosis of breast cancer. Technol Cancer Res Treat. 2011;10(6):607–23.PubMedGoogle Scholar
  90. 90.
    Luckmann R. Magnetic resonance imaging was more sensitive than mammography for detecting breast cancer in high-risk women. ACP J Club. 2005;142(1):23.PubMedGoogle Scholar
  91. 91.
    Allahverdipour H, Asghari-Jafarabadi M, Emami A. Breast cancer risk perception, benefits of and barriers to mammography adherence among a group of Iranian women. Women Health. 2011;51(3):204–19.PubMedGoogle Scholar
  92. 92.
    Brédart A, Kop JL, Fall M, Pelissier S, Simondi C, Dolbeault S, et al. Anxiety and specific distress in women at intermediate and high risk of breast cancer before and after surveillance by magnetic resonance imaging and mammography versus standard mammography. Psychooncology. 2012;21(11):1185–94.Google Scholar
  93. 93.
    Salas D, Ibáñez J, Román R, Cuevas D, Sala M, Ascunce N, et al. Effect of start age of breast cancer screening mammography on the risk of false-positive results. Prev Med. 2011;53(1–2):76–81.PubMedGoogle Scholar
  94. 94.
    Brinton JT, Barke LD, Freivogel ME, Jackson S, O’Donnell CI, Glueck DH. Breast cancer risk assessment in 64,659 women at a single high-volume mammography clinic. Acad Radiol. 2012;19(1):95–9.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Otto SJ, Fracheboud J, Verbeek AL, Boer R, Reijerink-Verheij JC, Otten JD, et al. Mammography screening and risk of breast cancer death: a population-based case-control study. Cancer Epidemiol Biomarkers Prev. 2012;21(1):66–73.PubMedGoogle Scholar
  96. 96.
    Kenny LM, Al-Nahhas A, Aboagye EO. Novel PET biomarkers for breast cancer imaging. Nucl Med Commun. 2011;32(5):333–5.PubMedGoogle Scholar
  97. 97.
    Silva CL, Passos M, Câmara JS. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers—a powerful strategy for breast cancer diagnosis. Talanta. 2012;89:360–8.PubMedGoogle Scholar
  98. 98.
    Wang DY, Done SJ, McCready DR, Boerner S, Kulkarni S, Leong WL. A new gene expression signature, the ClinicoMolecular Triad Classification, may improve prediction and prognostication of breast cancer at the time of diagnosis. Breast Cancer Res. 2011;13(5):R92.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9.PubMedGoogle Scholar
  100. 100.
    Germano S, O’Driscoll L. Breast cancer: understanding sensitivity and resistance to chemotherapy and targeted therapies to aid in personalised medicine. Curr Cancer Drug Targets. 2009;9(3):398–418.PubMedGoogle Scholar
  101. 101.
    LaPensee EW, Ben-Jonathan N. Novel roles of prolactin and estrogens in breast cancer: resistance to chemotherapy. Endocr Relat Cancer. 2010;17(2):R91–107.PubMedGoogle Scholar
  102. 102.
    Rivera E, Gomez H. Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Res. 2010;12 Suppl 2:S2.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Knappskog S, Chrisanthar R, Løkkevik E, Anker G, Østenstad B, Lundgren S, et al. Low expression levels of ATM may substitute for CHEK2/TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer. Breast Cancer Res. 2012;14(2):R47.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Wajapeyee N, Somasundaram K. Pharmacogenomics in breast cancer: current trends and future directions. Curr Opin Mol Ther. 2004;6(3):296–301.PubMedGoogle Scholar
  105. 105.
    Newman WG, Flockhart D. Breast cancer pharmacogenomics: where we are going. Pharmacogenomics. 2012;13(6):629–31.PubMedGoogle Scholar
  106. 106.
    Yiannakopoulou E. Pharmacogenomics of breast cancer targeted therapy: focus on recent patents. Recent Pat DNA Gene Seq. 2012;6(1):33–46.PubMedGoogle Scholar
  107. 107.
    Virnig BA, Torchia MT, Jarosek SL, Durham S, Tuttle TM. Use of endocrine therapy following diagnosis of ductal carcinoma in situ or early invasive breast cancer: Data Points #14. 2012. In: Data Points Publication Series [Internet]. Rockville: Agency for Healthcare Research and Quality (US); 2011. Available from: http://www.ncbi.nlm.nih.gov/books/NBK109739/.
  108. 108.
    Davis MA, Hanash S. High-throughput genomic technology in research and clinical management of breast cancer. Plasma-based proteomics in early detection and therapy. Breast Cancer Res. 2006;8(6):217.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Galvão ER, Martins LM, Ibiapina JO, Andrade HM, Monte SJ. Breast cancer proteomics: a review for clinicians. J Cancer Res Clin Oncol. 2011;137(6):915–25.PubMedGoogle Scholar
  110. 110.
    Garrisi VM, Abbate I, Quaranta M, Mangia A, Tommasi S, Paradiso A. SELDI-TOF serum proteomics and breast cancer: which perspective? Expert Rev Proteomics. 2008;5(6):779–85.PubMedGoogle Scholar
  111. 111.
    Braakman RB, Luider TM, Martens JW, Foekens JA, Umar A. Laser capture microdissection applications in breast cancer proteomics. Methods Mol Biol. 2011;755:143–54.PubMedGoogle Scholar
  112. 112.
    Opstal-van Winden AW, Rodenburg W, Pennings JL, van Oostrom CT, Beijnen JH, Peeters PH, et al. A bead-based multiplexed immunoassay to evaluate breast cancer biomarkers for early detection in pre-diagnostic serum. Int J Mol Sci. 2012;13(10):13587–604.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Verma M, Seminara D, Arena FJ, John C, Iwamoto K, Hartmuller V. Genetic and epigenetic biomarkers in cancer : improving diagnosis, risk assessment, and disease stratification. Mol Diagn Ther. 2006;10(1):1–15.PubMedGoogle Scholar
  114. 114.
    Srivastava S, Verma M, Henson DE. Biomarkers for early detection of colon cancer. Clin Cancer Res. 2001;7(5):1118–26.PubMedGoogle Scholar
  115. 115.
    Srinivas PR, Verma M, Zhao Y, Srivastava S. Proteomics for cancer biomarker discovery. Clin Chem. 2002;48(8):1160–9.PubMedGoogle Scholar
  116. 116.
    Verma M, Srivastava S. New cancer biomarkers deriving from NCI early detection research. Recent Results Cancer Res. 2003;163:72–84; discussion 264–6.PubMedGoogle Scholar
  117. 117.
    Srivastava S. Cancer biomarker discovery and development in gastrointestinal cancers: early detection research network-a collaborative approach. Gastrointest Cancer Res. 2007;1(4 Suppl 2):S60–3.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Kelloff GJ, Sigman CC. Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discov. 2012;11(3):201–14.PubMedGoogle Scholar
  119. 119.
    Koestler DC, Marsit CJ, Christensen BC, Accomando W, Langevin SM, Houseman EA, et al. Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomarkers Prev. 2012;21(8):1293–302.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Ravdin PM, Siminoff LA, Davis GJ, Mercer MB, Hewlett J, Gerson N, et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol. 2001;19(4):980–91.PubMedGoogle Scholar
  121. 121.
    Blamey RW, Ellis IO, Pinder SE, Lee AH, Macmillan RD, Morgan DA, et al. Survival of invasive breast cancer according to the Nottingham Prognostic Index in cases diagnosed in 1990–1999. Eur J Cancer. 2007;43(10):1548–55.PubMedGoogle Scholar
  122. 122.
    Wishart GC, Azzato EM, Greenberg DC, Rashbass J, Kearins O, Lawrence G, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010;12(1):R1.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Epidemiology and Genomics Research ProgramNational Cancer Institute, National Institutes of Health (NIH)RockvilleUSA
  2. 2.Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB)Nonakuri, Purba MedinipurIndia

Personalised recommendations