Omics of Male Breast Cancer

  • Zahide Nur Unal
  • Gülhan Kaya
  • Debmalya Barh
  • Esra Gunduz
  • Mehmet Gunduz


Male breast cancer (MBC) is rarely diagnosed. However, it has relatively poor prognosis when compared to female breast cancer. Although the importance of genetic predisposition in MBC etiology has been considerably understood, a wide range of gene and protein alterations playing various roles in MBC carcinogenesis point at its polygenic nature rather than single gene inheritance. Therefore, more comprehensive approaches including omics study and related technologies are required to thoroughly manage this malignancy, though such studies have been scarcely performed in MBC.


Male breast cancer Genetics BRCA1 Hereditary cancer Molecular marker BRCA2 EGFR Her2 


  1. 1.
    Borgen PI, Wong GY, Vlamis V, Potter C, Hoffmann B, Kinne DW, et al. Current management of male breast cancer. A review of 104 cases. Ann Surg. 1992;215(5):451–7.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Fentiman IS, Fourquet A, Hortobagyi GN. Male breast cancer. Lancet. 2006;367(9510):595–604.PubMedCrossRefGoogle Scholar
  3. 3.
    Giordano SH, Cohen DS, Buzdar AU, Perkins G, Hortobagyi GN. Breast carcinoma in men. A population-based study. Cancer. 2004;101:51–7.PubMedCrossRefGoogle Scholar
  4. 4.
    American Cancer Society. Cancer facts & figures 2012. Atlanta: American Cancer Society; 2012. Available online:
  5. 5.
  6. 6.
    Barh D. Biomarkers, critical disease pathways, drug targets, and alternative medicine in male breast cancer. Curr Drug Targets. 2009;10(1):1–8.PubMedCrossRefGoogle Scholar
  7. 7.
    El-Gazayerli MM, Abdel-Aziz AS. On bilharziasis and male breast cancer in Egypt. Br J Cancer. 1963;17:556–71.CrossRefGoogle Scholar
  8. 8.
    Awadelkarim KD, Aceto G, Veschi S, Elhaj A, Morgano A, Mohamedani AA, et al. BRCA1 and BRCA2 status in a Central Sudanese series of breast cancer patients: interactions with genetic, ethnic and reproductive factors. Breast Cancer Res Treat. 2007;102(2):189–99. Epub 2007 Mar 1.PubMedCrossRefGoogle Scholar
  9. 9.
    Volpe CM, Raffetto JD, Collure DW, et al. Unilateral male breast masses: cancer risk and their evaluation and management. Am Surg. 1999;65(3):250–3.PubMedGoogle Scholar
  10. 10.
    Heller K, Rosen P, Schottenfeld D. Male breast cancer: a clinicopathologic study of 97 cases. Ann Surg. 1978;188:60–5.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Brinton L, Carreon J, Gierach G, McGlynn KA, Gridley G. Etiologic factors for male breast cancer in the U.S. Veterans Affairs medical care system database. Breast Cancer Res Treat. 2010;119:185–92.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Green L, Wysowski DK, Fourcroy JL. Gynecomastia and breast cancer during finasteride therapy. N Engl J Med. 1996;335(11):823.PubMedCrossRefGoogle Scholar
  13. 13.
    Marger D, Urdaneta N, Fischer JJ. Breast cancer in brothers: case reports and review of 30 cases of male breast cancer. Cancer. 1975;36(2):458–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Zygogianni AG, Kyrgias G, Gennatas C, Ilknur A, Armonis V, Tolia M, et al. Male breast carcinoma: epidemiology, risk factors and current therapeutic approaches. Asian Pac J Cancer Prev. 2012;13:15–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Sørensen HT, Friis S, Olsen JH, Thulstrup AM, Mellemkjaer L, Linet M, et al. Risk of breast cancer in men with liver cirrhosis. Am J Gastroenterol. 1998;93(2):231–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Onami S, Ozaki M, Mortimer JE, Pal SK. Male breast cancer: an update in diagnosis, treatment and molecular profiling. Maturitas. 2010;65(4):308–14.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gradishar WJ. Male breast cancer. In: Harris JR, Lippman ME, Morrow M, Osborn CK, editors. Disease of the breast. Philadelphia: Lippincott Williams and Wilkins; 2000. p. 661–7.Google Scholar
  18. 18.
    Sasco AJ, Lowenfels AB, Pasker-de Jong P. Epidemiology of male breast cancer: a meta analysis published case–control studies and discussion of selected a etiological factors. Int J Cancer. 1993;53(4):538–49.PubMedCrossRefGoogle Scholar
  19. 19.
    Eldar S, Nash E, Abrahanson J. Radiation carcinogenesis in the male breast. Eur J Surg Oncol. 1989;15(3):274–8.PubMedGoogle Scholar
  20. 20.
    Evans DB, Crichlow RW. Carcinoma of the male breast and klinefelter’s syndrome: is there an association? CA Cancer J Clin. 1987;37(4):246–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Crichlow RW, Galt SW. Male breast cancer. Surg Clin North Am. 1990;70(5):1165–77.PubMedGoogle Scholar
  22. 22.
    Hansen J. Elevated risk for male breast cancer after occupational exposure to gasoline and vehicular combustion products. Am J Ind Med. 2000;37(4):349–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Ewertz M, Holmberg L, Tretli S, Pedersen BV, Kristensen A. Risk factors for male breast cancer—a case-control study from Scandinavia. Acta Oncol. 2001;40(4):467–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Brinton LA, Richesson DA, Gierach GL, Lacey Jr JV, Park Y, Hollenbeck AR, et al. Prospective evaluation of risk factors for male breast cancer. J Natl Cancer Inst. 2008;100(20):1477–81.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Orr N, Cooke R, Jones M, Fletcher O, Dudbridge F, Chilcott-Burns S, et al. Genetic variants at chromosomes 2q35, 5p12, 6q25.1, 10q26.13, and 16q12.1 influence the risk of breast cancer in men. PLoS Genet. 2011;7(9):e1002290. doi:10.1371/journal.pgen.1002290.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Burstein HJ, Harris JR, Morrow M. Malignant tumors of the breast. In: DeVita Jr VT, Lawrence TS, Rosenberg SA, editors. Cancer: principles and practice of oncology. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 1401–46.Google Scholar
  27. 27.
    Giordano SH, Buzdar AU, Hortobagyi GN. Breast cancer in men. Ann Intern Med. 2002;137(8):678–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Ravandi-Kashani F, Hayes TG. Male breast cancer: a review of the literature. Eur J Cancer. 1998;34(9):1341–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Cutuli B, Lacroze M, Dilhuydy JM, Velten M, De Lafontan B, Marchal C, et al. Male breast cancer: results of the treatments and prognostic factors in 397 cases. Eur J Cancer. 1995;31A(12):1960–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Li J, Gromov P, Gromova I, Moreira JM, Timmermans-Wielenga V, Rank F, et al. Omics-based profiling of carcinoma of the breast and matched regional lymph node metastasis. Proteomics. 2008;8(23–24):5038–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Fisher B, Slack N, Katrych D, Wolmark N. Ten year follow-up results of patients with carcinoma of the breast in a cooperative clinical trial evaluating surgical adjuvant chemotherapy. Surg Gynecol Obstet. 1975;140:528–34.PubMedGoogle Scholar
  32. 32.
    Gattuso P, Reddy VB, Green L, Castelli M, Haley D, Herman C. Prognostic significance of DNA ploidy in male breast carcinoma. A retrospective analysis of 32 cases. Cancer. 1992;70(4):777–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Giordano SH. A review of the diagnosis and management of male breast cancer. Oncologist. 2005;10(7):471–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Kornegoor R, Verschuur-Maes AH, Buerger H, Hogenes MC, de Bruin PC, Oudejans JJ, et al. Immunophenotyping of male breast cancer. Histopathology. 2012. doi:10.1111/j.1365-2559.2012.04330x.PubMedGoogle Scholar
  35. 35.
    Johansson I, Nilsson C, Berglund P, Lauss M, Ringnér M, Olsson H, et al. Gene expression profiling of primary male breast cancers reveals two unique subgroups and identifies N-acetyltransferase-1 (NAT1) as a novel prognostic biomarker. Breast Cancer Res. 2012;14:R31.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kornegoor R, Verschuur-Maes AHJ, Buerger H, Hogenes MCH, de Bruin PC, Oudejans JJ, et al. Molecular subtyping of male breast cancer by immunohistochemistry. Mod Pathol. 2012;25:398–404. doi:10.1038/modpathol.2011.174.PubMedCrossRefGoogle Scholar
  37. 37.
    Basu A, Basu I, Chakraborty A, Pal S, Chattopadiiyay U. Detection and purification of a novel 72 kDa glycoprotein male breast tumor associated antigen. Int J Cancer. 2003;105:377–83.PubMedCrossRefGoogle Scholar
  38. 38.
    Barh D, Das K. Targeting critical disease pathways in male breast cancer: a pharmacogenomics approach. Cancer Ther. 2008;6:193–212.Google Scholar
  39. 39.
    Thorlacius S, Struewing JP, Hartge P, Olafsdottir GH, Sigvaldason H, Tryggvadottir L, et al. Population-based study of risk of breast cancer in carriers of BRCA-2 mutation. Lancet. 1998;352(9137):1337–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Winer EP, Morrow M, Osborne CK, et al. Malignant tumors of the breast. In: Devita VT, Hellman S, Rosenberg SA, editors. Cancer principles and practice of oncology. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 1651–717.Google Scholar
  41. 41.
    Wagner JL, Thomas CR, Koh WJ, Rudolph RH. Carcinoma of the male breast: update 1994. Med Pediatr Oncol. 1995;24(2):123–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Thorlacius S, Tryggvadottir L, Olafsdottir GH, Jonasson JG, Ogmundsdottir HM, Tulinius H, et al. Linkage to BRCA2 region in hereditary male breast cancer. Lancet. 1995;346(8974):544–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Basham VM, Lipscombe JM, Ward JM, Gayther SA, Ponder BA, Easton DF, et al. BRCA1 and BRCA2 mutations in a population-based study of male breast cancer. Breast Cancer Res. 2002;4:R2.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bishop DT. BRCA1 and BRCA2 and breast cancer incidence: a review. Ann Oncol. 1999;10 Suppl 6:113–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Bonadona V, Lasset C. Inherited predisposition to breast cancer: after the BRCA1 and BRCA2 genes, what next? Bull Cancer. 2003;90(7):587–94.PubMedGoogle Scholar
  47. 47.
    Pich A, Margaria E, Chiusa L. Bcl-2 expression in male breast carcinoma. Virchows Arch. 1998;433:229–35.PubMedCrossRefGoogle Scholar
  48. 48.
    Gurigliano G, Colleoni M, Renne G, Mazzarol G, Gennari R, Peruzzotti G, et al. Recognizing features that are dissimilar in male and female breast cancer: expression of p21waf1 and p27kip1 using an immunohistochemical assay. Ann Oncol. 2002;13:895–902.CrossRefGoogle Scholar
  49. 49.
    Frangou EM, Lawson J, Kanthan R. Angiogenesis in male breast cancer. World J Surg Oncol. 2005;3:16.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kizildag S, Gulsu E, Bagci O, Yuksel E, Canda T. Vitamin D receptor gene polymorphisms and male breast cancer risk in Turkish population. J BUON. 2011;16(4):640–5.PubMedGoogle Scholar
  51. 51.
    Hultborn R, Hanson C, Köpf I, Verbiené I, Warnhammar E, Weimarck A. Prevalence of Klinefelter’s syndrome in male breast cancer patients. Anticancer Res. 1997;17:4293–7.PubMedGoogle Scholar
  52. 52.
    Shaaban AM, Ball GR, Brannan RA, Cserni G, Di Benedetto A, Dent J, et al. A comparative biomarker study of 514 matched cases of male and female breast cancer reveals gender-specific biological differences. Breast Cancer Res Treat. 2012;133(3):949–58. Epub 2011 Nov 18.PubMedCrossRefGoogle Scholar
  53. 53.
    Wikipedia [Internet]. Available from:
  54. 54.
  55. 55.
    Human Genome Project. Oak Ridge National Laboratory [Internet]. Available from:
  56. 56.
    Yang Y, Pospisil P, Iyer LK, Adelstein SJ, Kassis AI. Integrative genomic data mining for discovery of potential blood-borne biomarkers for early diagnosis of cancer. PLoS One. 2008;3(11):e3661. Epub 2008 Nov 6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Com E, Hondermarck H. Functional proteomics in oncology: to understand more than to describe. Med Sci (Paris). 2007;23(Spec No 1):27–30.CrossRefGoogle Scholar
  58. 58.
    Chahed K, Kabbage M, Hamrita B, Guillier CL, Trimeche M, Remadi S, et al. Detection of protein alterations in male breast cancer using two dimensional gel electrophoresis and mass spectrometry: the involvement of several pathways in tumorigenesis. Clin Chim Acta. 2008;388(1–2):106–14. Epub 2007 Oct 22.PubMedCrossRefGoogle Scholar
  59. 59.
    Callari M, Cappelletti V, De Cecco L, Musella V, Miodini P, Veneroni S, et al. Gene expression analysis reveals a different transcriptomic landscape in female and male breast cancer. Breast Cancer Res Treat. 2011;127(3):601–10. Epub 2010 Jul 13.PubMedCrossRefGoogle Scholar
  60. 60.
    Chen X, Yan GY, Liao XP. A novel candidate disease genes prioritization method based on module partition and rank fusion. OMICS. 2010;14(4):337–56.PubMedCrossRefGoogle Scholar
  61. 61.
    Orr N, Lemnrau A, Cooke R, Fletcher O, Tomczyk K, Jones M, et al. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nat Genet. 2012;44(11):1182–4.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kornegoor R, Moelans CB, Verschuur-Maes AH, Hogenes MC, de Bruin PC, Oudejans JJ, et al. Oncogene amplification in male breast cancer: analysis by multiplex ligation-dependent probe amplification. Breast Cancer Res Treat. 2012;135:49–58.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Rudlowski C, Schulten H-J, Golas MM, Sander B, Barwing R, Palandt JE, et al. Comparative genomic hybridization analysis on male breast cancer. Int J Cancer. 2006;118:2455–60.PubMedCrossRefGoogle Scholar
  64. 64.
    Kornegoor R, Moelans CB, Verschuur-Maes AH, Hogenes MC, de Bruin PC, Oudejans JJ, et al. Promoter hypermethylation in male breast cancer: analysis by multiplex ligation-dependent probe amplification. Breast Cancer Res. 2012;14(4):R101.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Gonias SL, Hembrough TA, Sankovik M. Cytokeratin 8 function as a major plasminogen receptor in select epithelial and carcinoma cells. Front Biosci. 2001;6:1403–11.CrossRefGoogle Scholar
  66. 66.
    Ding SJ, Li Y, Tan YX, Jiang MR, Tian B, Liu YK, et al. From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Mol Cell Proteomics. 2004;3:73–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Chahed K, Kabbage M, Ehret-Sabatier L, Lemaitre-Guillier C, Remadi S, Hoebeke J, et al. Expression of fibrinogen E-fragment and fibrin E-fragment is inhibited in the human infiltrating ductal carcinoma of the breast: the two-dimensional electrophoresis and MALDI–TOF-mass spectrometry analyses. Int J Oncol. 2005;27:1425–31.PubMedGoogle Scholar
  68. 68.
    Kim H, Lee T, Park ES, Suh JM, Park SJ, Chung HK, et al. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells. J Biol Chem. 2000;275:18266–70.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee SP, Hwang YS, Kim YJ, Kwon KS, Kim HJ, Kim K, et al. Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. J Biol Chem. 2001;276:29826–32.PubMedCrossRefGoogle Scholar
  70. 70.
    Ruiz Z, Jian-Guo J, Hai P, Bing-Gen R. Use of serological proteomic methods to find biomarkers associated with breast cancer. Proteomics. 2003;3:433–9.CrossRefGoogle Scholar
  71. 71.
    He QY, Cheung YH, Leung SY, Yuen ST, Chu KM, Chiu JF. Diverse proteomic alterations in gastric adenocarcinoma. Proteomics. 2004;4:3276–87.PubMedCrossRefGoogle Scholar
  72. 72.
    Hittelet A, Legendre H, Nagy N, Bronckart Y, Pector JC, Salmon I, et al. Upregulation of galectins-1 and −3 in human colon cancer and their role in regulating cell migration. Int J Cancer. 2003;103:370–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Lehmann U, Streichert T, Otto B, Albat C, Hasemeier B, Christgen H, et al. Identification of differentially expressed. microRNAs in human male breast cancer. BMC Cancer. 2010;10:109.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.PubMedCrossRefGoogle Scholar
  75. 75.
    Fassan M, Baffa R, Palazzo J, Lloyd J, Crosariol M, Liu CG, et al. MicroRNA expression profiling of male breast cancer. Breast Cancer Res. 2009;11(4):R58.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Zahide Nur Unal
    • 1
  • Gülhan Kaya
    • 1
  • Debmalya Barh
    • 2
  • Esra Gunduz
    • 1
  • Mehmet Gunduz
    • 1
  1. 1.Department of Medical GeneticsTurgut Özal University Medical SchoolAnkaraTurkey
  2. 2.Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB)Nonakuri, Purba MedinipurIndia

Personalised recommendations