Melatonin in the Etiology, Pathophysiology, and Management of Schizophrenia

  • George AndersonEmail author
  • Michael Maes


Emerging data suggests that melatonin has been overlooked in the developmental etiology, course, and treatment of schizophrenia. The neuroimmune and oxidative stress factors in the pathophysiology of schizophrenia and the nature of specific symptoms including circadian dysregulation, sleep disturbance, and metabolic disturbances suggest a significant role for melatonin in course and treatment. Importantly side effects of antipsychotics including tardive dyskinesia, weight gain, and metabolic dysregulation highlight an important therapeutic role for the adjunctive use of melatonin. It is proposed that melatonin interacts with the tryptophan catabolite pathway, known to be altered in schizophrenia. The decrease in melatonin in schizophrenia is mediated by increased activation of the tryptophan catabolite pathway driving tryptophan away from serotonin and melatonin production. This impacts cognition, affect, and motivational processing via changes in the cortex, amygdala, and striatum, respectively. Importantly melatonin may improve not only the quality of life but also the drastic decrease in life expectancy in schizophrenia patients.


Melatonin Schizophrenia Antipsychotics Metabolism Inflammation Stress Neuroprogression Leptin Agomelatine Ramelteon 


  1. 1.
    Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, “just the facts”: what we know in 2008. 2. Epidemiology and etiology. Schizophr Res. 2008;102:1–18.PubMedGoogle Scholar
  2. 2.
    Flaum M. Strategies to close the “mortality gap”. Am J Psychiatry. 2010;167(2):120–1.PubMedGoogle Scholar
  3. 3.
    Anderson G, Maes M. Schizophrenia: linking prenatal infection to hypoNMDAr, immune-inflammation, demyelination, susceptibility genes, IDO, neuroprogression and treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:5–19.Google Scholar
  4. 4.
    Marczynski TJ, Yamaguchi N, Ling GM, Grodzinska L. Sleep induced by the administration of melatonin (5-methoxyn-acetyltrptamine) to the hypothalamus in unrestrained cats. Experientia. 1964;20(8):435–7.PubMedGoogle Scholar
  5. 5.
    Bushe CJ, Leonard BE. Blood glucose and schizophrenia: a systematic review of prospective randomized clinical trials. J Clin Psychiatry. 2007;68(11):1682–90.PubMedGoogle Scholar
  6. 6.
    Tardieu S, Micallef J, Gentile S, Blin O. Weight gain profiles of new anti-psychotics: public health consequences. Obes Rev. 2003;4(3):129–38.PubMedGoogle Scholar
  7. 7.
    Meyer U, Feldon J, Dammann O. Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr Res. 2011;69(5 Pt 2):26R–33.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Brown AS, Derkitis EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167(3):261–80.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Read J, Perry BD, Moskowitz A, Connolly J. The contribution of early traumatic events to schizophrenia in some patients: a traumagenic neurodevelopmental model. Psychiatry. 2001;64:319–45.PubMedGoogle Scholar
  10. 10.
    Parry BL, Meliska CJ, Sorenson DL, Lopez AM, Martinez LF, Nowakowski S, et al. Plasma melatonin circadian rhythm disturbances during pregnancy and postpartum in depressed women and women with personal or family histories of depression. Am J Psychiatry. 2008;165(12):1551–8.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Richter HG, Hansell JA, Raut S, Giussani DA. Melatonin improves placental efficiency and birth weight and increase the placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res. 2009;46(4):357–64.PubMedGoogle Scholar
  12. 12.
    Srinivasan V, Mohamed M, Kato H. Melatonin in bacterial and viral infections with focus on sepsis: a review. Recent Pat Endocr Metab Immune Drug Discov. 2012;6(1):30–9.PubMedGoogle Scholar
  13. 13.
    Huang SH, Cao XJ, Wei W. Melatonin decreases TLR3-mediated inflammatory factor expression via inhibition of NF-kappa B activation in respiratory syncytial virus-infected RAW264.7 macrophages. J Pineal Res. 2008;45(1):93–100.PubMedGoogle Scholar
  14. 14.
    Kendell RE, Juszczak E, Cole SK. Obstetric complications and schizophrenia: a case control study based on standardised obstetric records. Br J Psychiatry. 1996;168:55–61.Google Scholar
  15. 15.
    Lanoix D, Guerin P, Vaillancourt C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J Pineal Res. 2012;53(4):417–25.PubMedGoogle Scholar
  16. 16.
    Bonnin A, Levitt P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience. 2011;197:1–7.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Chung JH, Melsop KA, Gilbert WM, Caughey AB, Walker CK, Main EK. Increasing pre-pregnancy body mass index is predictive of a progressive escalation in adverse pregnancy outcomes. J Matern Fetal Neonatal Med. 2012;25(9):1635–9.PubMedGoogle Scholar
  18. 18.
    Lynch AM, Eckel RH, Murphy JR, Gibbs RS, West NA, Giclas PC, et al. Prepregnancy obesity and complement system activation in early pregnancy and the subsequent development of preeclampsia. Am J Obstet Gynecol. 2012;206(5):428.e1–8.Google Scholar
  19. 19.
    Chigusa Y, Tatsumi K, Kondoh E, Fujita K, Nishimura F, Mogami H, et al. Decreased lectin-like oxidized LDL receptor 1 (LOX-1) and low Nrf2 activation in placenta are involved in preeclampsia. J Clin Endocrinol Metab. 2012;97(10):E1862–70.PubMedGoogle Scholar
  20. 20.
    Gupta BB, Yanthan L, Singh KM. In vitro effects of 5-hydroxytryptophan, indoleamines and leptin on arylalkylamine N-acetyltransferase (AA-NAT) activity in pineal organ of the fish, Clarias gariepinus (Burchell, 1822) during different phases of the breeding cycle. Indian J Exp Biol. 2010;48(8):786–92.PubMedGoogle Scholar
  21. 21.
    Miller J, Gallo RL. Vitamin D and innate immunity. Dermatol Ther. 2010;23(1):13–22.PubMedGoogle Scholar
  22. 22.
    Bikle DD. Vitamin D, and immune function: understanding common pathways. Curr Osteoporos Rep. 2009;7(2):58–63.PubMedGoogle Scholar
  23. 23.
    McGrath J, Eyles D, Mowry B, Yolken R, Buka S. Low maternal vitamin D as a risk factor for schizophrenia: a pilot study using banked sera. Schizophr Res. 2003;63(1–2):73–8.PubMedGoogle Scholar
  24. 24.
    Hewison M. Vitamin D, and the immune system: new perspectives on an old theme. Endocrinol Metabol Clin North Am. 2010;39(2):365–79.Google Scholar
  25. 25.
    Proietti S, Cucina A, D’Anselmi F, Dinicola S, Pasqualato A, Lisi E, et al. Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells. J Pineal Res. 2011;50(2):150–8.PubMedGoogle Scholar
  26. 26.
    Park HJ, Park JK, Kim SK, Cho AR, Kim JW, Yim SV, et al. Association of polymorphism in the promoter of the melatonin receptor 1A gene with schizophrenia and with insomnia symptoms in schizophrenia patients. J Mol Neurosci. 2011;45(2):304–8.PubMedGoogle Scholar
  27. 27.
    Aufdenblatten M, Baumann M, Raio L, Dick B, Frey BM, Schneider H, et al. Prematurity is related to high placental cortisol in preeclampsia. Pediatr Res. 2009;65(2):198–202.PubMedGoogle Scholar
  28. 28.
    Causevic M, Mohaupt M. 11beta-hydroxysteroid dehydrogenase type 2 in pregnancy and preeclampsia. Mol Aspects Med. 2007;28(2):220–6.PubMedGoogle Scholar
  29. 29.
    Crupi R, Mazzon E, Marino A, La Spada G, Bramanti P, Cuzzocrea S, et al. Melatonin treatment mimics the antidepressant action in chronic corticosterone-treated mice. J Pineal Res. 2010;49(2):123–9.PubMedGoogle Scholar
  30. 30.
    Quiros I, Mayo JC, Garcia-Suarez O, Hevia D, Martin V, Rodríguez C, et al. Melatonin prevents the glucocorticoid receptor inhibition of cell proliferation and toxicity in hippocampal cells by reducing the glucocorticoid receptor nuclear translocation. J Steroid Biochem Mol Biol. 2008;110:116–24.PubMedGoogle Scholar
  31. 31.
    Chun RF, Adams JS, Hewison M. Review: back to the future: a new look at “old” vitamin D3. J Endocrinol. 2008;198:261–9.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Reynolds RM, Walker BR, Phillips DI, Dennison EM, Fraser R, Mackenzie SM, et al. Programming of hypertension: associations of plasma aldosterone in adult men and women with birthweight, cortisol, and blood pressure. Hypertension. 2009;53(6):932–6.PubMedGoogle Scholar
  33. 33.
    Rennie K, De Butte M, Pappas BA. Melatonin promotes neurogenesis in dentate gyrus in the pinealectomized rat. J Pineal Res. 2009;47(4):313–7.PubMedGoogle Scholar
  34. 34.
    Chen YC, Tain YL, Sheen JM, Huang LT. Melatonin utility in neonates and children. J Formos Med Assoc. 2012;111(2):57–66.PubMedGoogle Scholar
  35. 35.
    Gozdzik-Zelazny A, Borecki L, Pokorski M. Depressive symptoms in schizophrenic patients. Eur J Med Res. 2011;16(12):549–52.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Anderson G, Maes M, Berk M. Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:101–14.PubMedGoogle Scholar
  37. 37.
    Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR. Peripheral and cerebral metabolic abnormalities of the tryptophan-kynurenine pathway in a murine model of major depression. Behav Brain Res. 2010;210(1):84–91.PubMedGoogle Scholar
  38. 38.
    Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR. Evidence for a key role of the peripheral kynurenine pathway in the modulation of anxiety- and depression-like behaviours in mice: focus on individual differences. Pharmacol Biochem Behav. 2011;98(1):161–8.PubMedGoogle Scholar
  39. 39.
    Shini S, Shini A, Kaiser P. Cytokine and chemokine gene expression profiles in heterophils from chickens treated with corticosterone. Stress. 2010;13(3):185–94.PubMedGoogle Scholar
  40. 40.
    Kristo C, Godang K, Ueland T, Lien E, Aukrust P, Froland SS, et al. Raised serum levels of interleukin-8 and interleukin-18 in relation to bone metabolism in endogenous Cushing’s syndrome. Eur J Endocrinol. 2002;146(3):389–95.PubMedGoogle Scholar
  41. 41.
    Reale M, Patruno A, DeLutiis MA, Pesce M, Felaco M, Di Giannantonio M, et al. Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls. BMC Neurosci. 2011;12:13.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Liu J, Liu J, Zhou Y, Li S, Li Y, Song X, et al. Association between promoter variants of interleukin-18 and schizophrenia in a Han Chinese population. DNA Cell Biol. 2011;30(11):913–7.PubMedGoogle Scholar
  43. 43.
    Anderson G. Neuronal-immune interactions in mediating stress effects in the etiology and course of schizophrenia: role of the amygdala in developmental co-ordination. Med Hypotheses. 2011;76(1):54–60.PubMedGoogle Scholar
  44. 44.
    Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70:663–71.PubMedGoogle Scholar
  45. 45.
    Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry. 2008;63:801–8.PubMedGoogle Scholar
  46. 46.
    Drexhage RC, Hoogenboezem TA, Cohen D, Versnel MA, Nolen WA, van Beverens NJM, et al. An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces. Int J Neuropsychopharmacol. 2011;14:746–55.PubMedGoogle Scholar
  47. 47.
    Bošković M, Vovk T, Kores Plesničar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol. 2011;9(2):301–12.PubMedGoogle Scholar
  48. 48.
    Wulff K, Dijk DJ, Middleton B, Foster RG, Joyce EM. Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry. 2012;200(4):308–16.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Maldonado MD, Pérez-San-Gregorio MA, Reiter RJ. The role of melatonin in the immuno-neuro-psychology of mental disorders. Recent Pat CNS Drug Discov. 2009;4(1):61–9.PubMedGoogle Scholar
  50. 50.
    Maldonado MD, Reiter RJ, Pérez-San-Gregorio MA. Melatonin as a potential therapeutic agent in psychiatric illness. Hum Psychopharmacol. 2009;24(5):391–400.PubMedGoogle Scholar
  51. 51.
    Martín M, Macías M, León J, Escames G, Khaldy H, Acuña-Castroviejo D. Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol. 2002;34(4):348–57.PubMedGoogle Scholar
  52. 52.
    Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, et al. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res. 2009;47(1):82–96.PubMedGoogle Scholar
  53. 53.
    Tajes M, Gutierrez-Cuesta J, Ortuño-Sahagun D, Camins A, Pallàs M. Anti-aging properties of melatonin in an in vitro murine senescence model: involvement of the sirtuin 1 pathway. J Pineal Res. 2009;47(3):228–37.PubMedGoogle Scholar
  54. 54.
    Corbalán-Tutau D, Madrid JA, Nicolás F, Garaulet M. Daily profile in two circadian markers “melatonin and cortisol” and associations with metabolic syndrome components. Physiol Behav. 2012; (in press).Google Scholar
  55. 55.
    Monteleone P, Maj M, Fusco M, Kemali D, Reiter RJ. Depressed nocturnal plasma melatonin levels in drug-free paranoid schizophrenics. Schizophr Res. 1992;7(1):77–84.PubMedGoogle Scholar
  56. 56.
    Monteleone P, Natale M, La Rocca A, Maj M. Decreased nocturnal secretion of melatonin in drug-free schizophrenics: no change after subchronic treatment with antipsychotics. Neuropsychobiology. 1997;36(4):159–63.PubMedGoogle Scholar
  57. 57.
    Bersani G, Mameli M, Garavini A, Pancheri P, Nordio M. Reduction of night/day difference in melatonin blood levels as a possible disease-related index in schizophrenia. Neuro Endocrinol Lett. 2003;24(3–4):181–4.PubMedGoogle Scholar
  58. 58.
    Jiang HK, Wang JY. Diurnal melatonin and cortisol secretion profiles in medicated schizophrenic patients. J Formos Med Assoc. 1998;97(12):830–7.PubMedGoogle Scholar
  59. 59.
    Vigano D, Lissoni P, Rovelli F, Roselli MG, Malugani F, Gavazzeni C, et al. A study of light/dark rhythm of melatonin in relation to cortisol and prolactin secretion in schizophrenia. Neuro Endocrinol Lett. 2001;22(2):137–41.PubMedGoogle Scholar
  60. 60.
    Rao ML, Gross G, Strebel B, Halaris A, Huber G, Bräunig P, et al. Circadian rhythm of tryptophan, serotonin, melatonin, and pituitary hormones in schizophrenia. Biol Psychiatry. 1994;35(3):151–63.PubMedGoogle Scholar
  61. 61.
    Afonso P, Brissos S, Figueira ML, Paiva T. Discrepant nocturnal melatonin levels in monozygotic twins discordant for schizophrenia and its impact on sleep. Schizophr Res. 2010;120(1–3):227–8.PubMedGoogle Scholar
  62. 62.
    Sandyk R, Kay SR. The relationship of pineal calcification to cortical atrophy in schizophrenia. Int J Neurosci. 1991;57(3–4):179–91.PubMedGoogle Scholar
  63. 63.
    Menon RR, Barta PE, Aylward EH, Richards SS, Vaughn DD, Tien AY, et al. Posterior superior temporal gyrus in schizophrenia: grey matter changes and clinical correlates. Schizophr Res. 1995;16(2):127–35.PubMedGoogle Scholar
  64. 64.
    Xu MQ, St Clair D, He L. Meta-analysis of association between ApoE epsilon 4 allele and schizophrenia. Schizophr Res. 2006;84(2–3):228–35.PubMedGoogle Scholar
  65. 65.
    Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol. 2010;8(3):228–42.PubMedGoogle Scholar
  66. 66.
    Otalora BB, Popovic N, Gambini J, Popovic M, Viña J, Bonet-Costa V. Circadian system functionality, hippocampal oxidative stress, and spatial memory in the APPswe/PS1dE9 transgenic model of Alzheimer disease: effects of melatonin or ramelteon. Chronobiol Int. 2012;29(7):822–34.Google Scholar
  67. 67.
    Zmarowski A, Wu HQ, Brooks JM, Potter MC, Pellicciari R, Schwarcz R, et al. Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci. 2009;29(3):529–38.PubMedGoogle Scholar
  68. 68.
    Alexander KS, Wu HQ, Schwarcz R, Bruno JP. Acute elevations of brain kynurenic acid impair cognitive flexibility: normalization by the alpha7 positive modulator galantamine. Psychopharmacology (Berl). 2012;220(3):627–37.Google Scholar
  69. 69.
    Miller CL, Murakami P, Ruczinski I, Ross RG, Sinkus M, Sullivan B, et al. Two complex genotypes relevant to the kynurenine pathway and melanotropin function show association with schizophrenia and bipolar disorder. Schizophr Res. 2009;113(2–3):259–67.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Luchowska E, Kloc R, Olajossy B, Wnuk S, Wielosz M, Owe-Larsson B, et al. Beta-adrenergic enhancement of brain kynurenic acid production mediated via cAMP-related protein kinase A signalling. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(3):519–29.PubMedGoogle Scholar
  71. 71.
    Rimmele U, Spillmann M, Bärtschi C, Wolf OT, Weber CS, Ehlert U, et al. Melatonin improves memory acquisition under stress independent of stress hormone release. Psychopharmacology (Berl). 2009;202(4):663–72.Google Scholar
  72. 72.
    Mexal S, Horton WJ, Crouch EL, Maier SI, Wilkinson AL, Marsole M, et al. Diurnal variation in nicotine sensitivity in mice: role of genetic background and melatonin. Neuropharmacology. 2012;63(6):966–73.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Afonso P, Brissos S, Figueira ML, Paiva T. Schizophrenia patients with predominantly positive symptoms have more disturbed sleep- wake cycles measured by actigraphy. Psychiatry Res. 2011;189(1):62–6.PubMedGoogle Scholar
  74. 74.
    Suresh Kumar PN, Andrade C, Bhakta SG, Singh NM. Melatonin in schizophrenic outpatients with insomnia: a double-blind, placebo-controlled study. J Clin Psychiatry. 2007;68(2):237–41.PubMedGoogle Scholar
  75. 75.
    Bromundt V, Köster M, Georgiev-Kill A, Opwis K, Wirz-Justice A, Stoppe G, et al. Sleep-wake cycles and cognitive functioning in schizophrenia. Br J Psychiatry. 2011;198(4):269–76.PubMedGoogle Scholar
  76. 76.
    Afonso P, Figueira ML, Paiva T. Sleep-promoting action of the endogenous melatonin in schizophrenia compared to healthy controls. Int J Psychiatry Clin Pract. 2011;15(4):311–5.PubMedGoogle Scholar
  77. 77.
    Anderson G. Melatonin, agomelatine and alcoholism: relevance to alcohol related brain damage and comorbid psychosis. Addict Drugs Th Treat. 2011;10(2):84–90.Google Scholar
  78. 78.
    Graham SM, Howgate D, Anderson W, Howes C, Heliotis M, Mantalaris A, et al. Risk of osteoporosis and fracture incidence in patients on antipsychotic medication. Expert Opin Drug Saf. 2011;10(4):575–602.PubMedGoogle Scholar
  79. 79.
    Zhang L, Su P, Xu C, Chen C, Liang A, Du K, et al. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression. J Pineal Res. 2010;49(4):364–72.PubMedGoogle Scholar
  80. 80.
    Maes M, Rief W. Diagnostic classifications in depression and somatization should include biomarkers, such as disorders in the tryptophan catabolite (TRYCAT) pathway. Psychiatry Res. 2012;196(2–3):243–9.PubMedGoogle Scholar
  81. 81.
    Nagane M, Suge R, Watanabe S. Relationship between psychosomatic complaints and circadian rhythm irregularity assessed by salivary levels of melatonin and growth hormone. J Circadian Rhythms. 2011;9:9.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Yousaf F, Seet E, Venkatraghavan L, Abrishami A, Chung F. Efficacy and safety of melatonin as an anxiolytic and analgesic in the perioperative period: a qualitative systematic review of randomized trials. Anesthesiology. 2010;113(4):968–76.PubMedGoogle Scholar
  83. 83.
    Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J, et al. MicroRNA‐132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci U S A. 2012;109(8):3125–30.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Lee SE, Kim SJ, Yoon HJ, Yu SY, Yang H, Jeong SI, et al. Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J Pineal Res. 2012;54:80–8.Google Scholar
  85. 85.
    Chwastiak LA, Tek C. The unchanging mortality gap for people with schizophrenia. Lancet. 2009;374(9690):590–2.PubMedGoogle Scholar
  86. 86.
    Anderson G, Maes M. Melatonin: an overlooked factor in schizophrenia and in the inhibition of anti- psychotic side effects. Metab Brain Dis. 2012;27(2):113–9.PubMedGoogle Scholar
  87. 87.
    Chang HM, Wu UI, Lan CT. Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep- deprived rats. J Pineal Res. 2009;47(3):211–20.PubMedGoogle Scholar
  88. 88.
    Cantó C, Auwerx J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab. 2009;20(7):325–31.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Kitagawa A, Ohta Y, Ohashi K. Melatonin improves metabolic syndrome induced by high fructose intake in rats. J Pineal Res. 2012;52(4):403–13.PubMedGoogle Scholar
  90. 90.
    Shieh JM. Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK-3b pathway in hepatic cells. J Pineal Res. 2009;47(4):339–44.PubMedGoogle Scholar
  91. 91.
    Sartori C, Dessen P, Mathieu C, Monney A, Bloch J, Nicod P, et al. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology. 2009;150(12):5311–7.PubMedGoogle Scholar
  92. 92.
    Relationship between insulin, leptin, and melatonin contents in patients with metabolic syndrome. Klin Med (Mosk). 2011;89(6):46–9.Google Scholar
  93. 93.
    Jonas M, Garfinkel D, Zisapel N, Laudon M, Grossman E. Impaired nocturnal melatonin secretion in non-dipper hypertensive patients. Blood Press. 2003;12:19–24.PubMedGoogle Scholar
  94. 94.
    Banks WA. Role of the blood–brain barrier in the evolution of feeding and cognition. Ann N Y Acad Sci. 2012;1264:13–19.Google Scholar
  95. 95.
    Ríos-Lugo MJ, Cano P, Jiménez-Ortega V, Fernández-Mateos MP, Scacchi PA, Cardinali DP, et al. Melatonin effect on plasma adiponectin, leptin, insulin, glucose, triglycerides and cholesterol in normal and high fat-fed rats. J Pineal Res. 2010;49(4):342–8.PubMedGoogle Scholar
  96. 96.
    Garza JC, Guo M, Zhang W, Lu XY. Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK- 3β/β-catenin signaling. Mol Psychiatry. 2012;17(8):790–808.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Venkatasubramanian G, Chittiprol S, Neelakantachar N, Shetty TK, Gangadhar BN. A longitudinal study on the impact of antipsychotic treatment on serum leptin in schizophrenia. Clin Neuropharmacol. 2010;33(6):288–92.PubMedGoogle Scholar
  98. 98.
    Avraham Y, Davidi N, Lassri V, Vorobiev L, Kabesa M, Dayan M, et al. Leptin induces neuroprotection neurogenesis and angiogenesis after stroke. Curr Neurovasc Res. 2011;8(4):313–22.PubMedGoogle Scholar
  99. 99.
    Zeki Al Hazzouri A, Stone KL, Haan MN, Yaffe K. Leptin, mild cognitive impairment, and dementia among elderly women. J Gerontol A Biol Sci Med Sci. 2013;68(2):175–80.PubMedGoogle Scholar
  100. 100.
    Johnston JM, Greco SJ, Hamzelou A, Ashford JW, Tezapsidis N. Repositioning leptin as a therapy for Alzheimer’s disease. Therapy. 2011;8(5):481–90.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Guo M, Lu Y, Garza JC, Li Y, Chua SC, Zhang W, et al. Forebrain glutamatergic neurons mediate leptin action on depression-like behaviors and synaptic depression. Transl Psychiatry. 2012;2:e83.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Hosoi T, Miyahara T, Kayano T, Yokoyama S, Ozawa K. Fluvoxamine attenuated endoplasmic reticulum stress-induced leptin resistance. Front Endocrinol (Lausanne). 2012;3:12.Google Scholar
  103. 103.
    Raskind MA, Burke BL, Crites NJ, Tapp AM, Rasmussen DD. Olanzapine-induced weight gain and increased visceral adiposity is blocked by melatonin replacement therapy in rats. Neuropsychopharmacology. 2007;32(2):284–8.PubMedGoogle Scholar
  104. 104.
    Kilzieh N. Principal Investigator. Identifier: NCT00512070; conference presentation.Google Scholar
  105. 105.
    Mann K, Rossbach W, Müller MJ, Müller-Siecheneder F, Pott T, Linde I, et al. Nocturnal hormone profiles in patients with schizophrenia treated with olanzapine. Psychoneuroendocrinology. 2006;31(2):256–64.PubMedGoogle Scholar
  106. 106.
    Borba CP, Fan X, Copeland PM, Paiva A, Freudenreich O, Henderson DC. Placebo-controlled pilot study of ramelteon for adiposity and lipids in patients with schizophrenia. J Clin Psychopharmacol. 2011;31(5):653–8.PubMedCentralPubMedGoogle Scholar
  107. 107.
    McKenna JT, Christie MA, Jeffrey BA, McCoy JG, Lee E, Connolly NP, et al. Chronic ramelteon treatment in a mouse model of Alzheimer’s disease. Arch Ital Biol. 2012;150(1):5–14.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Chenu F, El Mansari M, Blier P. Electrophysiological effects of repeated administration of agomelatine on the dopamine, norepinephrine, and serotonin systems in the rat brain. Neuropsychopharmacology. 2013;38(2):275–84.PubMedGoogle Scholar
  109. 109.
    Reagan LP, Reznikov LR, Evans AN, Gabriel C, Mocaër E, Fadel JR. The antidepressant agomelatine inhibits stress-mediated changes in amino acid efflux in the rat hippocampus and amygdala. Brain Res. 2012;1466:91–8.PubMedGoogle Scholar
  110. 110.
    Morley-Fletcher S, Mairesse J, Soumier A, Banasr M, Fagioli F, Gabriel C, et al. Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats. Psychopharmacology (Berl). 2011;217(3):301–13.Google Scholar
  111. 111.
    Tardito D, Molteni R, Popoli M, Racagni G. Synergistic mechanisms involved in the antidepressant effects of agomelatine. Eur Neuropsychopharmacol. 2012;22 Suppl 3:S482–6.PubMedGoogle Scholar
  112. 112.
    Dodd S, Ratheesh A, Maes M, Anderson G, Dean O, Sarris J, et al. Putative neuroprotective agents in major psychoses. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:135–45.Google Scholar
  113. 113.
    Condray R, Dougherty GG, Keshavan MS, Reddy RD, Haas GL, Montrose DM, et al. 3-hydroxykynurenine and clinical symptoms in first-episode neuroleptic-naive patients with schizophrenia. Int J Neuropsychopharmacol. 2011;14:756–67.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Myint AM, Schwarz MJ, Verkerk R, Mueller HH, Zach J, Scharpé S. Reversal of imbalance between kynurenic acid and 3-hydroxykynurenine by antipsychotics in medication-naïve and medication-free schizophrenic patients. Brain Behav Immun. 2011;25(8):1576–81.PubMedGoogle Scholar
  115. 115.
    Kuo CJ, Yang SY, Liao YT, Chen WJ, Lee WC, Shau WY. Second-generation antipsychotic medications and risk of pneumonia in schizophrenia. Schizophr Bull. 2013;39(3):648–57.PubMedGoogle Scholar
  116. 116.
    Leow L, Simpson T, Cursons R, Karalus N, Hancox RJ. Vitamin D, innate immunity and outcomes in community acquired pneumonia. Respirology. 2011;16(4):611.PubMedGoogle Scholar
  117. 117.
    Lee YD, Kim JY, Lee KH, Kwak YJ, Lee SK, Kim OS, et al. Melatonin attenuates lipopolysaccharide-induced acute lung inflammation in sleep-deprived mice. J Pineal Res. 2009;46(1):53–7.PubMedGoogle Scholar
  118. 118.
    Shilo L, Dagan Y, Smorjik Y, Weinberg U, Dolev S, Komptel B, et al. Effect of melatonin on sleep quality of COPD intensive care patients: a pilot study. Chronobiol Int. 2000;17(1):71–6.PubMedGoogle Scholar
  119. 119.
    Maes M, Meltzer HY, Bosmans E. Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand. 1994;89:346–51.PubMedGoogle Scholar
  120. 120.
    Utsunomiya K, Shinkai T, Sakata S, Yamada K, Chen HI, De Luca V, et al. Genetic association between the dopamine D3 receptor gene polymorphism (Ser9Gly) and tardive dyskinesia in patients with schizophrenia: a reevaluation in East Asian populations. Neurosci Lett. 2012;507(1):52–6.PubMedGoogle Scholar
  121. 121.
    Wang F, Fan H, Sun H, Yang F, Luo Y, Liu H, et al. Association between TNF-α promoter-308A/G polymorphism and tardive dyskinesian Chinese Han patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37(1):106–10.PubMedGoogle Scholar
  122. 122.
    Shamir E, Barak Y, Plopsky I, Zisapel N, Elizur A, Weizman A. Is melatonin treatment effective for tardive dyskinesia? J Clin Psychiatry. 2000;61(8):556–8.PubMedGoogle Scholar
  123. 123.
    Shamir E, Barak Y, Shalman I, Laudon M, Zisapel N, Tarrasch R, et al. Melatonin treatment for tardive dyskinesia: a double-blind, placebo-controlled, crossover study. Arch Gen Psychiatry. 2001;58(11):1049–52.PubMedGoogle Scholar
  124. 124.
    Lai IC, Chen ML, Wang YC, Chen JY, Liao DL, Bai YM. Analysis of genetic variations in the human melatonin receptor (MTNR1A, MTNR1B) genes and antipsychotics-induced tardive dyskinesia in schizophrenia. World J Biol Psychiatry. 2011;12(2):143–8.PubMedGoogle Scholar
  125. 125.
    Lerner V, Miodownik C. Motor symptoms of schizophrenia: is tardive dyskinesia a symptom or side effect? A modern treatment. Curr Psychiatry Rep. 2011;13(4):295–304.PubMedGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.CRCGlasgowScotland, UK
  2. 2.Department of PsychiatryChulalongkorn University HospitalBangkokThailand

Personalised recommendations