Advertisement

Melatonin’s Antioxidant Properties: Molecular Mechanisms

  • Rüdiger HardelandEmail author
Chapter

Abstract

Melatonin acts as an antioxidant in various ways. Direct scavenging of free radicals requires elevated concentrations, which are present in some high-melatonin organisms and in melatonin-synthesizing organs and used in experimental systems designed for antagonizing oxidotoxicity. Upregulation of antioxidant enzymes occurs at physiological concentrations but is tissue and species specific. Moreover, melatonin prevents excessive radical generation by antiexcitatory and anti-inflammatory actions; by supporting mitochondrial electron flux, thereby reducing electron leakage; and, presumably, by optimizing phase relationships within the circadian multioscillator system.

Keywords

Antioxidant Circadian Excitotoxicity Free radicals Inflammation Melatonin Mitochondria 

References

  1. 1.
    Tan D-X, Chen L-D, Poeggeler B, Manchester LC, Reiter RJ. Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.Google Scholar
  2. 2.
    Tan D-X, Reiter RJ, Chen L-D, Poeggeler B, Manchester LC, Barlow-Walden LR. Both physiological and pharmacological levels of melatonin reduce DNA adduct formation induced by the carcinogen safrole. Carcinogenesis. 1994;15:615–8.CrossRefGoogle Scholar
  3. 3.
    Hardeland R. Antioxidative protection by melatonin – multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005;27:119–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin – a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011;93:350–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Coto-Montes A, Boga JA, Tomás-Zapico C, Rodríguez-Colunga MJ, Martínez-Fraga J, Tolivia-Cadrecha D, et al. Physiological oxidative stress model: Syrian hamster Harderian gland – sex differences in antioxidant enzymes. Free Radic Biol Med. 2001;30:785–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Hardeland R. Melatonin metabolism in the central nervous system. Curr Neuropharmacol. 2010;8:168–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Hardeland R. Melatonin and 5-methoxytryptamine in non-metazoans. Reprod Nutr Dev. 1999;39:399–408.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen G, Huo Y, Tan D-X, Liang Z, Zhang W, Zhang Y. Melatonin in Chinese medicinal herbs. Life Sci. 2003;73:19–26.PubMedCrossRefGoogle Scholar
  9. 9.
    Hardeland R, Pandi-Perumal SR, Poeggeler B. Melatonin in plants – focus on a vertebrate night hormone with cytoprotective properties. Funct Plant Sci Biotechnol. 2007;1:32–45.Google Scholar
  10. 10.
    Antolín I, Obst B, Burkhardt S, Hardeland R. Antioxidative protection in a high-melatonin organism: the dinoflagellate Gonyaulax polyedra is rescued from lethal oxidative stress by strongly elevated, but physiologically possible concentrations of melatonin. J Pineal Res. 1997;23:182–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Hardeland R, Madrid JA, Tan D-X, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res. 2012;52:139–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Hardeland R, Coto-Montes A. New vistas on oxidative damage and aging. Open Biol J. 2010;3:39–52.CrossRefGoogle Scholar
  13. 13.
    Tan D-X, Reiter RJ, Manchester LC, Yan MT, El-Sawi M, Sainz RM, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002;2:181–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Tan D-X, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub ST, et al. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun. 1998;253:614–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Hardeland R, Poeggeler B, Niebergall R, Zelosko V. Oxidation of melatonin by carbonate radicals and chemiluminescence emitted during pyrrole ring cleavage. J Pineal Res. 2003;34:17–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Hardeland R, Tan D-X, Reiter RJ. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res. 2009;47:109–26.PubMedCrossRefGoogle Scholar
  17. 17.
    de Almeida EA, Martinez GR, Klitzke CF, de Medeiros MHG, Di Mascio P. Oxidation of melatonin by singlet molecular oxygen (O2(1Δg)) produces N1-acetyl-N2-formyl-5-methoxykynurenine. J Pineal Res. 2003;35:131–7.Google Scholar
  18. 18.
    Tan D-X, Hardeland R, Manchester LC, Poeggeler B, Lopez-Burillo S, Mayo JC, et al. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J Pineal Res. 2003;34:249–59.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosen J, Than NN, Koch D, Poeggeler B, Laatsch H, Hardeland R. Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res. 2006;41:374–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Ressmeyer A-R, Mayo JC, Zelosko V, Sáinz RM, Tan D-X, Poeggeler B, et al. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep. 2003;8:205–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Hardeland R, Backhaus C, Fadavi A. Reactions of the NO redox forms NO+, •NO and HNO (protonated NO–) with the melatonin metabolite N1-acetyl-5-methoxykynuramine. J Pineal Res. 2007;43:382–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Hardeland R. Melatonin and its metabolites as anti-nitrosating and anti-nitrating agents. J Exp Integr Med. 2011;1:67–81.CrossRefGoogle Scholar
  23. 23.
    Clément P, Gharib A, Cespuglio R, Sarda N. Changes in sleep-wake cycle architecture and cortical nitric oxide release during ageing in the rat. Neuroscience. 2003;116:863–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Tapias V, Escames G, López LC, López A, Camacho E, Carrión MD, et al. Melatonin and its brain metabolite N1-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice. J Neurosci Res. 2009;87:3002–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Entrena A, Camacho ME, Carrión MD, López-Cara LC, Velasco G, León J, et al. Kynurenamines as neural nitric oxide synthase inhibitors. J Med Chem. 2005;48:8174–81.PubMedCrossRefGoogle Scholar
  26. 26.
    León J, Escames G, Rodríguez MI, López LC, Tapias V, Entrena A, et al. Inhibition of neuronal nitric oxide synthase activity by N1-acetyl-5-methoxykynuramine, a brain metabolite of melatonin. J Neurochem. 2006;98:2023–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Mayo JC, Sainz RM, Tan D-X, Hardeland R, Leon J, Rodriguez C, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol. 2005;165:139–49.PubMedCrossRefGoogle Scholar
  28. 28.
    Manev H, Uz T, Qu T. Early upregulation of hippocampal 5-lipoxygenase following systemic administration of kainate to rats. Restor Neurol Neurosci. 1998;12:81–5.PubMedGoogle Scholar
  29. 29.
    Zhang H, Akbar M, Kim HY. Melatonin: an endogenous negative modulator of 12-lipoxygenation in the rat pineal gland. Biochem J. 1999;344:487–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Carlberg C, Wiesenberg I. The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: an unexpected relationship. J Pineal Res. 1995;18:171–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Steinhilber D, Brungs M, Werz O, Wiesenberg I, Danielsson C, Kahlen JP, et al. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J Biol Chem. 1995;270:7037–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Radogna F, Sestili P, Martinelli C, Paolillo M, Paternoster L, Albertini MC, et al. Lipoxygenase-mediated pro-radical effect of melatonin via stimulation of arachidonic acid metabolism. Toxicol Appl Pharmacol. 2009;238:170–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Reiter RJ, Tan D-X, Mayo JC, Sainz RM, Leon J, Czarnocki Z. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50:1129–46.PubMedGoogle Scholar
  34. 34.
    Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: nature’s most versatile biological signal? FEBS J. 2006;273:2813–38.PubMedCrossRefGoogle Scholar
  35. 35.
    Hardeland R, Poeggeler B. Melatonin beyond its classical functions. Open Physiol J. 2008;1:1–23.CrossRefGoogle Scholar
  36. 36.
    Acuña-Castroviejo D, Escames G, Rodríguez MI, López LC. Melatonin role in the mitochondrial function. Front Biosci. 2007;12:947–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Rodríguez MI, Escames G, López LC, López A, García JA, Ortiz F, et al. Chronic melatonin treatment reduces the age-dependent inflammatory process in senescence-accelerated mice. J Pineal Res. 2007;42:272–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Gürdöl F, Genç S, Öner-İyidogan Y, Süzme R. Coadministration of melatonin and estradiol in rats: effects on oxidant status. Horm Metab Res. 2001;33:608–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Mauriz JL, Molpeceres V, García-Mediavilla MV, Gonzalez P, Barrio JP, Gonzalez-Gallego J. Melatonin prevents oxidative stress and changes in antioxidant enzyme expression and activity in the liver of aging rats. J Pineal Res. 2007;42:222–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, et al. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res. 2009;47:82–96.PubMedCrossRefGoogle Scholar
  41. 41.
    Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int. 2003;20:921–62.PubMedCrossRefGoogle Scholar
  42. 42.
    Hardeland R, Poeggeler B, Pappolla MA. Mitochondrial actions of melatonin ― an endeavor to identify their adaptive and cytoprotective mechanisms. Abh Sächs Akad Wiss Math-Nat Kl. 2009;65(Pt 3):14–31.Google Scholar
  43. 43.
    Hardeland R. Neuroprotection by radical avoidance: search for suitable agents. Molecules. 2009;14:5054–102.PubMedCrossRefGoogle Scholar
  44. 44.
    Prada C, Udin SB, Wiechmann AF, Zhdanova IV. Stimulation of melatonin receptors decreases calcium levels in Xenopus tectal cells by activating GABAC receptors. J Neurophysiol. 2005;94:968–78.PubMedCrossRefGoogle Scholar
  45. 45.
    Prada C, Udin SB. Melatonin decreases calcium levels in retinotectal axons of Xenopus laevis by indirect activation of group III metabotropic glutamate receptors. Brain Res. 2005;1053:67–76.PubMedCrossRefGoogle Scholar
  46. 46.
    León J, Vives F, Crespo E, Camacho E, Espinosa A, Gallo MA, et al. Modification of nitric oxide synthase activity and neuronal response in rat striatum by melatonin and kynurenine derivatives. J Neuroendocrinol. 1998;10:297–302.PubMedCrossRefGoogle Scholar
  47. 47.
    León J, Macías M, Escames G, Camacho E, Khaldy H, Martín M, et al. Structure-related inhibition of calmodulin-dependent neuronal nitric-oxide synthase activity by melatonin and synthetic kynurenines. Mol Pharmacol. 2000;58:967–75.PubMedGoogle Scholar
  48. 48.
    Liu LY, Hoffman GE, Fei XW, Li Z, Zhang ZH, Mei YA. Delayed rectifier outward K+ current mediates the migration of rat cerebellar granule cells stimulated by melatonin. J Neurochem. 2007;102:333–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang M, Cao LH, Yang XL. Melatonin modulates glycine currents of retinal ganglion cells in rat. Neuroreport. 2007;18:1675–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Fenoglio-Simeone K, Mazarati A, Sefidvash-Hockley S, Shin D, Wilke J, Milligan H, et al. Anticonvulsant effects of the selective melatonin receptor agonist ramelteon. Epilepsy Behav. 2009;16:52–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Baykal A, Iskit AB, Hamaloglu E, Guc MO, Hascelik G, Sayek I. Melatonin modulates mesenteric blood flow and TNFalpha concentrations after lipopolysaccharide challenge. Eur J Surg. 2000;166:722–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Park HJ, Kim HJ, Ra J, Hong SJ, Baik HH, Park HK, et al. Melatonin inhibits lipopolysaccharide-induced CC chemokine subfamily gene expression in human peripheral blood mononuclear cells in a microarray analysis. J Pineal Res. 2007;43:121–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Shang Y, Xu SP, Wu Y, Jiang YX, Wu ZY, Yuan SY, et al. Melatonin reduces acute lung injury in endotoxemic rats. Chin Med J (Engl). 2009;122:1388–93.Google Scholar
  54. 54.
    Escames G, López LC, Ortíz F, Ros E, Acuña-Castroviejo D. Age-dependent lipopolysaccharide-induced iNOS expression and multiorgan failure in rats: effects of melatonin treatment. Exp Gerontol. 2006;41:1165–73.PubMedCrossRefGoogle Scholar
  55. 55.
    Escames G, López LC, Tapias V, Utrilla P, Reiter RJ, Hitos AB, et al. Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. J Pineal Res. 2006;40:71–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Escames G, López LC, Ortíz F, López A, García JA, Ros E, et al. Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J. 2007;274:2135–47.PubMedCrossRefGoogle Scholar
  57. 57.
    Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, et al. Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci. 2008;28:12039–51.PubMedCrossRefGoogle Scholar
  58. 58.
    McCann SK, Dusting GJ, Roulston CL. Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res. 2008;86:2524–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Chen H, Song YS, Chan PH. Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab. 2009;29:1262–72.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Block K, Gorin Y, Abboud HE. Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A. 2009;106:14385–90.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Hardeland R. Melatonin, mitochondrial electron flux and leakage: recent findings and resolution of contradictory results. Adv Stud Biol. 2009;1:207–30.Google Scholar
  62. 62.
    Zhou J, Zhang S, Zhao X, Wei T. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-β1-42. J Pineal Res. 2008;45:157–65.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, et al. Superoxide flashes in single mitochondria. Cell. 2008;134:279–90.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Sheu SS, Wang W, Cheng H, Dirksen RT. Superoxide flashes: illuminating new insights into cardiac ischemia/reperfusion injury. Future Cardiol. 2008;4:551–4.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Schwarzländer M, Logan DC, Fricke MD, Sweetlove LJ. The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide ‘flashes’. Biochem J. 2011;437:381–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Coto-Montes A, Hardeland R. Diurnal rhythm of protein carbonyl as an indicator of oxidative damage in Drosophila melanogaster: influence of clock gene alleles and deficiencies in the formation of free-radical scavengers. Biol Rhythms Res. 1999;30:383–91.CrossRefGoogle Scholar
  67. 67.
    Coto-Montes A, Tomás-Zapico C, Rodríguez-Colunga MJ, Tolivia-Cadrecha D, Martínez-Fraga J, Hardeland R, et al. Effects of the circadian mutation ‘tau’ on the Harderian glands of Syrian hamsters. J Cell Biochem. 2001;83:426–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Johann Friedrich Blumenbach Institute of Zoology and AnthropologyGöttingenGermany

Personalised recommendations