Skip to main content

Melatonin’s Antioxidant Properties: Molecular Mechanisms

  • Chapter
  • First Online:

Abstract

Melatonin acts as an antioxidant in various ways. Direct scavenging of free radicals requires elevated concentrations, which are present in some high-melatonin organisms and in melatonin-synthesizing organs and used in experimental systems designed for antagonizing oxidotoxicity. Upregulation of antioxidant enzymes occurs at physiological concentrations but is tissue and species specific. Moreover, melatonin prevents excessive radical generation by antiexcitatory and anti-inflammatory actions; by supporting mitochondrial electron flux, thereby reducing electron leakage; and, presumably, by optimizing phase relationships within the circadian multioscillator system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tan D-X, Chen L-D, Poeggeler B, Manchester LC, Reiter RJ. Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.

    Google Scholar 

  2. Tan D-X, Reiter RJ, Chen L-D, Poeggeler B, Manchester LC, Barlow-Walden LR. Both physiological and pharmacological levels of melatonin reduce DNA adduct formation induced by the carcinogen safrole. Carcinogenesis. 1994;15:615–8.

    Article  Google Scholar 

  3. Hardeland R. Antioxidative protection by melatonin – multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005;27:119–30.

    Article  CAS  PubMed  Google Scholar 

  4. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin – a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011;93:350–84.

    Article  CAS  PubMed  Google Scholar 

  5. Coto-Montes A, Boga JA, Tomás-Zapico C, Rodríguez-Colunga MJ, Martínez-Fraga J, Tolivia-Cadrecha D, et al. Physiological oxidative stress model: Syrian hamster Harderian gland – sex differences in antioxidant enzymes. Free Radic Biol Med. 2001;30:785–92.

    Article  CAS  PubMed  Google Scholar 

  6. Hardeland R. Melatonin metabolism in the central nervous system. Curr Neuropharmacol. 2010;8:168–81.

    Article  CAS  PubMed  Google Scholar 

  7. Hardeland R. Melatonin and 5-methoxytryptamine in non-metazoans. Reprod Nutr Dev. 1999;39:399–408.

    Article  CAS  PubMed  Google Scholar 

  8. Chen G, Huo Y, Tan D-X, Liang Z, Zhang W, Zhang Y. Melatonin in Chinese medicinal herbs. Life Sci. 2003;73:19–26.

    Article  CAS  PubMed  Google Scholar 

  9. Hardeland R, Pandi-Perumal SR, Poeggeler B. Melatonin in plants – focus on a vertebrate night hormone with cytoprotective properties. Funct Plant Sci Biotechnol. 2007;1:32–45.

    Google Scholar 

  10. Antolín I, Obst B, Burkhardt S, Hardeland R. Antioxidative protection in a high-melatonin organism: the dinoflagellate Gonyaulax polyedra is rescued from lethal oxidative stress by strongly elevated, but physiologically possible concentrations of melatonin. J Pineal Res. 1997;23:182–90.

    Article  PubMed  Google Scholar 

  11. Hardeland R, Madrid JA, Tan D-X, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res. 2012;52:139–66.

    Article  CAS  PubMed  Google Scholar 

  12. Hardeland R, Coto-Montes A. New vistas on oxidative damage and aging. Open Biol J. 2010;3:39–52.

    Article  CAS  Google Scholar 

  13. Tan D-X, Reiter RJ, Manchester LC, Yan MT, El-Sawi M, Sainz RM, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002;2:181–97.

    Article  CAS  PubMed  Google Scholar 

  14. Tan D-X, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub ST, et al. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun. 1998;253:614–20.

    Article  CAS  PubMed  Google Scholar 

  15. Hardeland R, Poeggeler B, Niebergall R, Zelosko V. Oxidation of melatonin by carbonate radicals and chemiluminescence emitted during pyrrole ring cleavage. J Pineal Res. 2003;34:17–25.

    Article  CAS  PubMed  Google Scholar 

  16. Hardeland R, Tan D-X, Reiter RJ. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res. 2009;47:109–26.

    Article  CAS  PubMed  Google Scholar 

  17. de Almeida EA, Martinez GR, Klitzke CF, de Medeiros MHG, Di Mascio P. Oxidation of melatonin by singlet molecular oxygen (O2(1Δg)) produces N1-acetyl-N2-formyl-5-methoxykynurenine. J Pineal Res. 2003;35:131–7.

    Google Scholar 

  18. Tan D-X, Hardeland R, Manchester LC, Poeggeler B, Lopez-Burillo S, Mayo JC, et al. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J Pineal Res. 2003;34:249–59.

    Article  CAS  PubMed  Google Scholar 

  19. Rosen J, Than NN, Koch D, Poeggeler B, Laatsch H, Hardeland R. Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res. 2006;41:374–81.

    Article  CAS  PubMed  Google Scholar 

  20. Ressmeyer A-R, Mayo JC, Zelosko V, Sáinz RM, Tan D-X, Poeggeler B, et al. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep. 2003;8:205–13.

    Article  CAS  PubMed  Google Scholar 

  21. Hardeland R, Backhaus C, Fadavi A. Reactions of the NO redox forms NO+, •NO and HNO (protonated NO–) with the melatonin metabolite N1-acetyl-5-methoxykynuramine. J Pineal Res. 2007;43:382–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hardeland R. Melatonin and its metabolites as anti-nitrosating and anti-nitrating agents. J Exp Integr Med. 2011;1:67–81.

    Article  Google Scholar 

  23. Clément P, Gharib A, Cespuglio R, Sarda N. Changes in sleep-wake cycle architecture and cortical nitric oxide release during ageing in the rat. Neuroscience. 2003;116:863–70.

    Article  PubMed  Google Scholar 

  24. Tapias V, Escames G, López LC, López A, Camacho E, Carrión MD, et al. Melatonin and its brain metabolite N1-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice. J Neurosci Res. 2009;87:3002–10.

    Article  CAS  PubMed  Google Scholar 

  25. Entrena A, Camacho ME, Carrión MD, López-Cara LC, Velasco G, León J, et al. Kynurenamines as neural nitric oxide synthase inhibitors. J Med Chem. 2005;48:8174–81.

    Article  CAS  PubMed  Google Scholar 

  26. León J, Escames G, Rodríguez MI, López LC, Tapias V, Entrena A, et al. Inhibition of neuronal nitric oxide synthase activity by N1-acetyl-5-methoxykynuramine, a brain metabolite of melatonin. J Neurochem. 2006;98:2023–33.

    Article  PubMed  Google Scholar 

  27. Mayo JC, Sainz RM, Tan D-X, Hardeland R, Leon J, Rodriguez C, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol. 2005;165:139–49.

    Article  CAS  PubMed  Google Scholar 

  28. Manev H, Uz T, Qu T. Early upregulation of hippocampal 5-lipoxygenase following systemic administration of kainate to rats. Restor Neurol Neurosci. 1998;12:81–5.

    CAS  PubMed  Google Scholar 

  29. Zhang H, Akbar M, Kim HY. Melatonin: an endogenous negative modulator of 12-lipoxygenation in the rat pineal gland. Biochem J. 1999;344:487–93.

    Article  CAS  PubMed  Google Scholar 

  30. Carlberg C, Wiesenberg I. The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: an unexpected relationship. J Pineal Res. 1995;18:171–8.

    Article  CAS  PubMed  Google Scholar 

  31. Steinhilber D, Brungs M, Werz O, Wiesenberg I, Danielsson C, Kahlen JP, et al. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J Biol Chem. 1995;270:7037–40.

    Article  CAS  PubMed  Google Scholar 

  32. Radogna F, Sestili P, Martinelli C, Paolillo M, Paternoster L, Albertini MC, et al. Lipoxygenase-mediated pro-radical effect of melatonin via stimulation of arachidonic acid metabolism. Toxicol Appl Pharmacol. 2009;238:170–7.

    Article  CAS  PubMed  Google Scholar 

  33. Reiter RJ, Tan D-X, Mayo JC, Sainz RM, Leon J, Czarnocki Z. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50:1129–46.

    CAS  PubMed  Google Scholar 

  34. Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: nature’s most versatile biological signal? FEBS J. 2006;273:2813–38.

    Article  CAS  PubMed  Google Scholar 

  35. Hardeland R, Poeggeler B. Melatonin beyond its classical functions. Open Physiol J. 2008;1:1–23.

    Article  CAS  Google Scholar 

  36. Acuña-Castroviejo D, Escames G, Rodríguez MI, López LC. Melatonin role in the mitochondrial function. Front Biosci. 2007;12:947–63.

    Article  PubMed  Google Scholar 

  37. Rodríguez MI, Escames G, López LC, López A, García JA, Ortiz F, et al. Chronic melatonin treatment reduces the age-dependent inflammatory process in senescence-accelerated mice. J Pineal Res. 2007;42:272–9.

    Article  PubMed  Google Scholar 

  38. Gürdöl F, Genç S, Öner-İyidogan Y, Süzme R. Coadministration of melatonin and estradiol in rats: effects on oxidant status. Horm Metab Res. 2001;33:608–11.

    Article  PubMed  Google Scholar 

  39. Mauriz JL, Molpeceres V, García-Mediavilla MV, Gonzalez P, Barrio JP, Gonzalez-Gallego J. Melatonin prevents oxidative stress and changes in antioxidant enzyme expression and activity in the liver of aging rats. J Pineal Res. 2007;42:222–30.

    Article  CAS  PubMed  Google Scholar 

  40. Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, et al. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res. 2009;47:82–96.

    Article  CAS  PubMed  Google Scholar 

  41. Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int. 2003;20:921–62.

    Article  CAS  PubMed  Google Scholar 

  42. Hardeland R, Poeggeler B, Pappolla MA. Mitochondrial actions of melatonin ― an endeavor to identify their adaptive and cytoprotective mechanisms. Abh Sächs Akad Wiss Math-Nat Kl. 2009;65(Pt 3):14–31.

    Google Scholar 

  43. Hardeland R. Neuroprotection by radical avoidance: search for suitable agents. Molecules. 2009;14:5054–102.

    Article  CAS  PubMed  Google Scholar 

  44. Prada C, Udin SB, Wiechmann AF, Zhdanova IV. Stimulation of melatonin receptors decreases calcium levels in Xenopus tectal cells by activating GABAC receptors. J Neurophysiol. 2005;94:968–78.

    Article  CAS  PubMed  Google Scholar 

  45. Prada C, Udin SB. Melatonin decreases calcium levels in retinotectal axons of Xenopus laevis by indirect activation of group III metabotropic glutamate receptors. Brain Res. 2005;1053:67–76.

    Article  CAS  PubMed  Google Scholar 

  46. León J, Vives F, Crespo E, Camacho E, Espinosa A, Gallo MA, et al. Modification of nitric oxide synthase activity and neuronal response in rat striatum by melatonin and kynurenine derivatives. J Neuroendocrinol. 1998;10:297–302.

    Article  PubMed  Google Scholar 

  47. León J, Macías M, Escames G, Camacho E, Khaldy H, Martín M, et al. Structure-related inhibition of calmodulin-dependent neuronal nitric-oxide synthase activity by melatonin and synthetic kynurenines. Mol Pharmacol. 2000;58:967–75.

    PubMed  Google Scholar 

  48. Liu LY, Hoffman GE, Fei XW, Li Z, Zhang ZH, Mei YA. Delayed rectifier outward K+ current mediates the migration of rat cerebellar granule cells stimulated by melatonin. J Neurochem. 2007;102:333–44.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang M, Cao LH, Yang XL. Melatonin modulates glycine currents of retinal ganglion cells in rat. Neuroreport. 2007;18:1675–8.

    Article  CAS  PubMed  Google Scholar 

  50. Fenoglio-Simeone K, Mazarati A, Sefidvash-Hockley S, Shin D, Wilke J, Milligan H, et al. Anticonvulsant effects of the selective melatonin receptor agonist ramelteon. Epilepsy Behav. 2009;16:52–7.

    Article  PubMed  Google Scholar 

  51. Baykal A, Iskit AB, Hamaloglu E, Guc MO, Hascelik G, Sayek I. Melatonin modulates mesenteric blood flow and TNFalpha concentrations after lipopolysaccharide challenge. Eur J Surg. 2000;166:722–7.

    Article  CAS  PubMed  Google Scholar 

  52. Park HJ, Kim HJ, Ra J, Hong SJ, Baik HH, Park HK, et al. Melatonin inhibits lipopolysaccharide-induced CC chemokine subfamily gene expression in human peripheral blood mononuclear cells in a microarray analysis. J Pineal Res. 2007;43:121–9.

    Article  CAS  PubMed  Google Scholar 

  53. Shang Y, Xu SP, Wu Y, Jiang YX, Wu ZY, Yuan SY, et al. Melatonin reduces acute lung injury in endotoxemic rats. Chin Med J (Engl). 2009;122:1388–93.

    CAS  Google Scholar 

  54. Escames G, López LC, Ortíz F, Ros E, Acuña-Castroviejo D. Age-dependent lipopolysaccharide-induced iNOS expression and multiorgan failure in rats: effects of melatonin treatment. Exp Gerontol. 2006;41:1165–73.

    Article  CAS  PubMed  Google Scholar 

  55. Escames G, López LC, Tapias V, Utrilla P, Reiter RJ, Hitos AB, et al. Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. J Pineal Res. 2006;40:71–8.

    Article  CAS  PubMed  Google Scholar 

  56. Escames G, López LC, Ortíz F, López A, García JA, Ros E, et al. Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J. 2007;274:2135–47.

    Article  CAS  PubMed  Google Scholar 

  57. Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, et al. Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci. 2008;28:12039–51.

    Article  PubMed  Google Scholar 

  58. McCann SK, Dusting GJ, Roulston CL. Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res. 2008;86:2524–34.

    Article  CAS  PubMed  Google Scholar 

  59. Chen H, Song YS, Chan PH. Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab. 2009;29:1262–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Block K, Gorin Y, Abboud HE. Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A. 2009;106:14385–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hardeland R. Melatonin, mitochondrial electron flux and leakage: recent findings and resolution of contradictory results. Adv Stud Biol. 2009;1:207–30.

    Google Scholar 

  62. Zhou J, Zhang S, Zhao X, Wei T. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-β1-42. J Pineal Res. 2008;45:157–65.

    Article  CAS  PubMed  Google Scholar 

  63. Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, et al. Superoxide flashes in single mitochondria. Cell. 2008;134:279–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Sheu SS, Wang W, Cheng H, Dirksen RT. Superoxide flashes: illuminating new insights into cardiac ischemia/reperfusion injury. Future Cardiol. 2008;4:551–4.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Schwarzländer M, Logan DC, Fricke MD, Sweetlove LJ. The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide ‘flashes’. Biochem J. 2011;437:381–7.

    Article  PubMed  Google Scholar 

  66. Coto-Montes A, Hardeland R. Diurnal rhythm of protein carbonyl as an indicator of oxidative damage in Drosophila melanogaster: influence of clock gene alleles and deficiencies in the formation of free-radical scavengers. Biol Rhythms Res. 1999;30:383–91.

    Article  CAS  Google Scholar 

  67. Coto-Montes A, Tomás-Zapico C, Rodríguez-Colunga MJ, Tolivia-Cadrecha D, Martínez-Fraga J, Hardeland R, et al. Effects of the circadian mutation ‘tau’ on the Harderian glands of Syrian hamsters. J Cell Biochem. 2001;83:426–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Hardeland Dr. rer. nat. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Hardeland, R. (2014). Melatonin’s Antioxidant Properties: Molecular Mechanisms. In: Srinivasan, V., Brzezinski, A., Oter, S., Shillcutt, S. (eds) Melatonin and Melatonergic Drugs in Clinical Practice. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0825-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0825-9_2

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0824-2

  • Online ISBN: 978-81-322-0825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics