Melatonin and Malaria: Therapeutic Avenues

  • Venkataramanujam SrinivasanEmail author
  • Mahaneem Mohamed
  • Rahimah Zakaria
  • Asma Hayati Ahmad
  • Rozieyati Mohamed Saleh


Malaria, one of the most deadly diseases of our time, affects more than 200 million people across the globe and is responsible for about one million deaths annually. Besides Plasmodium falciparum which is the main cause for malarial infection in human beings, Plasmodium knowlesi from Malaysia also remains as the most virulent parasite spreading fast not only in Malaysia but also in different parts of the world. Global malaria eradication program by use of insecticide spraying has resulted in good response in the past. Treatment of malaria-infected patients with antimalarial drugs has helped to eliminate malarial infections successfully, but with increased resistance displayed by malarial parasites to these drugs, there is resurgence of malaria caused both by drug resistance and by infection caused by new malarial species like Plasmodium knowlesi. Recent advances on molecular studies on malarial parasites reveal that the pineal hormone melatonin acts as a cue for growth and development of Plasmodium falciparum. Same may be true for Plasmodium knowlesi also. Hence, treatment modalities that can effectively block the action of melatonin on Plasmodium species during nighttime by way of using either bright light therapy or use of melatonin receptor blocking can be considered as useful approaches for eliminating malarial infection in man.


Malaria Antimalarial drugs Plasmodium knowlesi Melatonin Luzindole 





Cyclic adenosine monophosphate




Erythrocyte membrane




Plasmodium calpain


Parasite clearance times


Plasmodium falciparum protein kinase 7


Protein kinase A


Phospholipase C


Parasite reduction ratio


Parasitophorous membrane


Red blood cell


Serine repeat antigen (multigene family)


Transmission-blocking drugs


Ubiquitin-proteosome protein degradation system


  1. 1.
    WHO, World Malaria Report: 2010, WHO Press, Geneva, Switzerland, 2010.Google Scholar
  2. 2.
    Sanz LM, Crespo B, De-Cozar C, Ding XC, Llergo JL, Burrows JN, et al. P. falciparum in vitro killing rates allow to discriminate between different anti-malarial mode-of-action. PLoS One. 2012;7(2):e30949.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Alonso PL, Djimde A, Kremsner P, Magill A, Najera J, Plowe CV, et al. malERA Consultative Group on Drugs. A research agenda for malaria eradication: drugs. PLoS Med. 2011;8(1):e1000402. doi:10.1371/journal.pmd 1000402.CrossRefGoogle Scholar
  4. 4.
    Piyaphanee W, Krudsood S, Tangpukdee N, Thanachartwet W, Silachamroon U, et al. Emergence and clearance of gametocytes in uncomplicated Plasmodium falciparum malaria. Am J Trop Med Hyg. 2006;74:432–5.PubMedGoogle Scholar
  5. 5.
    Shekalaghe S, Drakeley C, Gosling R, Ndaro A, van Meegeren M, Enevold A. Primaquine clears submicroscopic Plasmodium falciparum gametocytes that persist after treatment with sulphadoxine-pyrimethamine and artesunate. PLoS One. 2007;2:e.1023. doi: 10.1371/journal.pone.0001023.CrossRefGoogle Scholar
  6. 6.
    Bousema T, Okell I, Shekalaghe S, Griffin JT, Omar S, Sawa P, et al. Revisiting the circulation time of Plasmodium falciparum gametocyte: molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs. Malar J. 2010;9:136.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Sinden RE, Carter R, Drakeley C, Leroy D. The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies. Malar J. 2012;11:70.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Breman JG, Brandling-Bennett AD. The challenge of malaria eradication in the twenty-first century: research linked to operations is the key. Vaccine. 2011;29:D97–103.PubMedCrossRefGoogle Scholar
  9. 9.
    Hotta CT, Gazarini ML, Beraldo FH, Varotti FP, Lopes C, Markus RP, et al. Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nat Cell Biol. 2000;2:466–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Beier J. Malaria parasite development in mosquitoes. Annu Rev Entomol. 1998;43:519–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Schofield L. Intravascular infiltrates and organ-specific inflammation in malaria pathogenesis. Immunol Cell Biol. 2007;85:130–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):512–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. The genome of simian and human malaria parasite Plasmodium knowlesi. Nature. 2008;455(7214):799–803.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Carlton J. The Plasmodium vivax genome sequencing project. Trends Parasitol. 2003;19(5):227–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Baker DA. Malaria gametocytogenesis. Mol Biochem Parasitol. 2010;172:57–65.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Lasonder E, Ishihama Y, Andersen JS, Vermunt AM, Pain A, Sauerwein RW, et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature. 2002;419:537–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith TG, Lourenco P, Carter R, Walliker D, Landford-Cartwright LC. Commitment to sexual differentiation in the human malarial parasite, Plasmodium falciparum. Parasitology. 2000;121(Pt5):127–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Silvestrini F, Alano P, Williams JL. Commitment to the production of male and female gametocytes in the human malarial parasite Plasmodium falciparum. Parasitology. 2000;121(Pt 5):465–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Trager W, Gill GS. Plasmodium falciparum gametocyte formation in vitro: its stimulation by phorbol diesters and by 8-bromo cyclic adenosine monophosphate. J Protozool. 1989;36:451–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Inselburg J. Stage-specific inhibitory effect of cyclic AMP on asexual maturation and gametocyte formation of Plasmodium falciparum. J Parasitol. 1983;69:592–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Kappe SH, Vaughen SM, Boddey JA, Cowman AF. That was then, but this is now: malaria research in the time of an eradication agenda. Science. 2010;328(5980):862–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Garcia CR, Markus RP, Madeira L. Tertian and quartan fevers: temporal regulation in malarial infection. J Biol Rhythms. 2001;16:436–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Bannister L, Mitchell G. The ins, outs, and roundabouts of malaria. Trends Parasitol. 2003;19:209–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Hotta CT, Markus RP, Garcia CR. Melatonin and N-acetylserotonin cross the red blood cell membrane and evoke calcium mobilization in malarial parasites. Braz J Med Biol Res. 2003;36:1583–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Lilburn TG, Cai H, Zhou Z, Wang Y. Protease-associated cellular networks in malaria parasite Plasmodium falciparum. BMC Genomics. 2011;12(S5):59.Google Scholar
  26. 26.
    Russo I, Oksman A, Vaupel B, Goldberg DE. A calpain unique to alveolates is essential in Plasmodium falciparum reveals an involvement in pre-5-phase development. Proc Natl Acad Sci U S A. 2009;106(5):1554–9.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Blackman MJ. Malarial proteases and host cell egress: an ‘emerging’ cascade. Cell Microbiol. 2008;10(10):1925–34.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Koyama FC, Ribeiro RY, Garcia JL, Azevedo MF, Charabarti D, Garcia CRS. Ubiquitin proteosome system and the atypical kinase PfPK7 are involved in melatonin signaling in Plasmodium falciparum. J Pineal Res. 2012. doi: 10.1111/j.1600-079X.2012.00981.x.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Cohen P. Protein kinases-the major drug targets of the twenty first century. Nat Rev Drug Discov. 2002;1:309–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Gazharini ML, Garcia RL. Interruption of the blood stage cycle of malaria parasite, Plasmodium chabaudi by protein tyrosine kinase inhibitors. Braz J Med Biol Res. 2003;36:1465–9.Google Scholar
  31. 31.
    Gazarini ML, Beraldo FH, Almeida FM, Bootman FM, deSilva AM, Garcia CRS. Melatonin triggers PKA activation in the rodent malarial parasite Plasmodium chabaudi. J Pineal Res. 2011;50:64–70.PubMedCrossRefGoogle Scholar
  32. 32.
    WHO. Making a difference. The World Health Report. Health Millions. 1999;25:3–5.Google Scholar
  33. 33.
    Wells TNC, Alonso PL, Gutteridge WE. New medicines to improve control and contribute to the eradication of malaria. Nat Rev. 2009;8:879–91.Google Scholar
  34. 34.
    Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–7.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Saleh JA, Yusuph H, Zailani SB, Ali B. Malaria vaccine: the pros and cons. Niger J Med. 2010;19(1):8–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Guinovart C, et al. Insights into long lasting protection induced by RTS.S/A502A malaria vaccine: further results from a phase IIb trial in Mozambican children. PLoS One. 2009;4:e5165.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Robert I, Enserink M. Did they really say eradication? Science. 2007;318:1544–5.CrossRefGoogle Scholar
  38. 38.
    Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet. 2004;363:1017–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Sabbatani S, Fiorino S, Manfredi R. Plasmodium knowlesi: from Malaysia, a novel health care threat. Infez Med. 2012;1:5–11.Google Scholar
  40. 40.
    Daneshvar C, Davis TME, Cox-Singh J, Rafa’ee MZ, Zakaria SK, Divis PC, et al. Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis. 2009;49:852–60.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Cox-singh J, Hiu J, Lucas SB, Divis PC, Zulkarnaen M, Chandran P, et al. Severe malaria-a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report. Malar J. 2010;9:1–7.CrossRefGoogle Scholar
  42. 42.
    Vythilingam I. Plasmodium knowlesi in humans: a review on the role of its vectors in Malaysia. Trop Biomed. 2010;27(1):1–12.PubMedGoogle Scholar
  43. 43.
    Vythilingam I, NoorAzian YM, Huat TC, Ida Jiram A, Yusri YM, Azahari AH, et al. Plasmodium knowlesi in humans, macaques and mosquitoes in Peninsular Malaysia. Parasit Vectors. 2008;1:26. doi: 10.1186/1756-3305-1-26.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Daneshwar C, Davis TME, Cox-Singh J, Rafa’ee MZ, Zakaria SK, Divis PC, et al. Clinical and parasitological response to oral chloroquine and primaquine in uncomplicated human Plasmodium knowlesi infections. Malar J. 2010;9:238–44.CrossRefGoogle Scholar
  45. 45.
    O’Neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin-the debate continues. Molecules. 2010;15:1705–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Gujjar R, Marwaha A, El Mazouni F, White J, White KL, Creason S, et al. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with anti malarial activity in mice. J Med Chem. 2009;52:1864–72.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Klonis N, Crespo-Ortis MP, Bottova I, Abu-Baker N, Kenney S, Rosenthal PJ, et al. Artemisinin activity against Plasmodium falciparum requires haemoglobin uptake and digestion. Proc Natl Acad Sci U S A. 2011;108:11405–10.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Kumura N, Furukawa H, Onyango AN, Izumi M, Nakajima S, Ito H, et al. Different behaviour of artemisinin and tetraoxane in the oxidative degradation of phospholipid. Chem Phys Lipids. 2009;160:114–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Delves M, Plouffe D, Scheurer C, Meister S, Wittlin S, Winzeler EA, et al. The activities of current antimalarial drugs on the life cycle stages of Plasmodium. PLoS Med. 2012;9(2):e1001169.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Wilairatana P, Tangpukdee N, Krudsood S. Longterm primaquine administration to reduce Plasmodium falciparum gametocyte transmission in hypoendemic areas. Southeast Asian J Top Med Public Health. 2010;41:1306–11.Google Scholar
  51. 51.
    Shekalaghe SA, Drakeley C, van den Bosch S, ter Braak R, van den Bijllardt W, Mwanziva C, et al. A cluster randomized trial of mass drug administration with a gametocytocidal drug combination to interrupt malaria transmission in a low endemic area in Tanzania. Malar J. 2011;10:247.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin-A pleiotropic, orchestering regulator molecule. Prog Neurobiol. 2011;93(3):350–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002;419:520–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Beraldo FH, Garcia CRS. Products of tryptophan metabolism induce Ca2+ release and modulate the cell cycle of Plasmodium falciparum malarial parasites. J Pineal Res. 2005;39:224–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Beraldo AH, Mikoshiba K, Garcia CR. Human malarial parasite Plasmodium falciparum displays a capacitative entry: 2 aminoethyl diphenylborinate blocks the signal transduction pathway of melatonin on P. falciparum cell cycle. J Pineal Res. 2007;43:360–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Alves E, Barlett PJ, Garcia CRS, Thomas A. Melatonin and IP3 release from intracellular stores in the Malaria Parasite Plasmodium falciparum within increased red blood cells. J Biol Chem. 2011;286(7):5905–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Balzer I, Hardeland R. Photoperiodism and effects of indoleamines in a unicellular algae. Gonyaulax polyedra. Science. 1991;253:795–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Macías M, Rodríguez-Cabezas MN, Reiter RJ, Osuna A, Acuña-Castroviejo D. Presence and effects of melatonin in Trypanosoma cruzi J Pineal Res. 1999;27(2):86–94.Google Scholar
  59. 59.
    Saigusa T, Ishizaki S, Watabiki S, Ishil N, Tanakadate A, Tamai V, et al. Circadian behavioural rhythm in Caenorhabditis elegans. Curr Biol. 2002;12:R46–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Tanaka D, Furusawa K, Kameyama K, Okamoto H, Doi M. Melatonin signalling regulates locomotion behaviour and homeostatic states through distinct pathways in Caenorhabditis elegans. Neuropharmacology. 2007;53:157–68.PubMedCrossRefGoogle Scholar
  61. 61.
    Sack RL. Host melatonin secretion is timing signal for the release of W. bancrofti. Med Hypotheses. 2009;73:147–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Srinivasan V, Ahmed AH, Mohamed M, Zakariah R. Melatonin effects on Plasmodium falciparum life cycle; a new avenue for therapeutic approach. Recent Pat Endocr Metab Immune Drug Discov. 2012;6(2):139–47.PubMedCrossRefGoogle Scholar
  63. 63.
    Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science. 1980;210:1267–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Ando K, Kripke DF, Cole RJ, Elliott JA. Light mask 500 lux treatment for delayed sleep phase syndrome. Prog Neuropsychopharmacol Biol Psychiatry. 1999;23:15–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Colbaugh ME, Timothy A. System and method for delivering electromagnetic radiation to the eyeball of a subject. US 2012/0041520 A1 dated, 16 Feb 2012.Google Scholar
  66. 66.
    Garcia CRS, De Azevedo MF, Wunderlich G, Budu A, Young JA, Bannister L. Plasmodium in the postgenomic era: new insights into the molecular cell biology of malaria parasites. Int Rev Cell Mol Biol. 2008;266:85–156.PubMedCrossRefGoogle Scholar
  67. 67.
    Abate K. Modern day malaria: an overview of this lingering threat. Adv Nurse Pract. 2008;16:67–8.PubMedGoogle Scholar
  68. 68.
    Siddiqui NJ, Pandey VC. Studies on hepatic oxidative stress and anti oxidative defense system during arteether treatment of Plasmodium yoelii nigeriensis infected mice. Mol Cell Biochem. 1999;196:169–73.CrossRefGoogle Scholar
  69. 69.
    Guha M, Maity P, Choubey V, Mitra K, Reiter RJ, Bandyopadhyay U. Melatonin inhibits free-radical mediated mitochondrial-dependent hepatocyte apoptosis and liver damage induced during malarial infection. J Pineal Res. 2007;43:372–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Srinivasan V, Spence DW, Moscovitch A, Pandi-Perumal SR, Trakht I, Brown GM, et al. Malaria: therapeutic implications of melatonin. J Pineal Res. 2010;48:1–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Venkataramanujam Srinivasan
    • 1
    • 2
    • 3
    Email author
  • Mahaneem Mohamed
    • 4
  • Rahimah Zakaria
    • 4
  • Asma Hayati Ahmad
    • 4
  • Rozieyati Mohamed Saleh
    • 5
  1. 1.Sri Sathya Sai Medical Educational and Research Foundation, An International Medical Sciences Research Study CenterCoimbatoreIndia
  2. 2.National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and TreatmentHospital “G. Mazzini”TeramoItaly
  3. 3.Department of Neuroscience and ImagingUniversity “G.D’ Annunzio”ChietiItaly
  4. 4.Department of PhysiologySchool of Medical Sciences, Universiti Sains MalaysiaKubang Kerian, KelantanMalaysia
  5. 5.School of Heath SciencesUniversiti Sains MalaysiaKubang Kerian, KelantanMalaysia

Personalised recommendations