Skip to main content

Salicylic Acid: Role in Plant Physiology and Stress Tolerance

  • Chapter
  • First Online:
Molecular Stress Physiology of Plants

Abstract

The plant phenolic salicylic acid (SA) plays a regulatory role in plant physiology and metabolism. An updated review has been made based on previous and recent publications related to influence of SA on physiological processes of plants such as flowering, thermogenesis, membrane function, ion uptake, and photosynthesis. The role of SA as a mediator in disease resistance in plants is also described. This chapter deals with the role of SA in plant response to abiotic stress factors of various natures, i.e., temperature, heavy metal, ozone, salinity, and drought. The exact mechanism of SA action in plants as a signal molecule in stress mitigation and other biological processes needs to be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aberg B (1981) Plant growth regulators. XII mono-sub stituted benzoic acids. Swed J Agric Res 11:93–105

    Google Scholar 

  • Alonso-Ramírez A, Rodrı’guez D, Reyes D, Jime’ nez JA, Nicola’s G et al (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    Article  Google Scholar 

  • Antoniw JF, White RF (1980) The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathol Z 98:331–341

    Article  CAS  Google Scholar 

  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Bendal DS, Bonner WD Jr (1971) Cyanide-insensitive respiration in plant mitochondria. Plant Physiol 47:236–245

    Article  Google Scholar 

  • Ben-Tal Y, Cleland CF (1982) Uptake and metabolism of [14C]-salicylic acid in Lemna Gibba G3. Plant Physiol 70:291–296

    Article  PubMed  CAS  Google Scholar 

  • Bhatia DS, Jindal V, Malke CP (1986) Effects of salicylic acid and tannic acid on stomatal aperture and some enzyme changes in isolated epidermal peelings of Euphorbia hirta L. Biochem Physiol Pflanz 181:262–264

    Google Scholar 

  • Black VJ, Black CR, Roberts JA, Stewart CA (2000) Impact of ozone on the reproductive development of plants. New Phytol 147:421–447

    Article  CAS  Google Scholar 

  • Bol JF, van Kan JAL (1988) The synthesis and possible functions of virus-induced proteins in plants. Microbiol Sci 5:47–52

    PubMed  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Bourbouloux A, Raymond P, Delrot S (1998) Effects of salicylic acid on sugar and amino acid uptake. J Exp Bot 49:239–247

    CAS  Google Scholar 

  • Boussiba S, Rikin A, Richmond AE (1975) The role of ABA in cross-adaptation of tobacco plants. Plant Physiol 56:337–339

    Article  PubMed  CAS  Google Scholar 

  • Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6:1845–1857

    PubMed  CAS  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  PubMed  CAS  Google Scholar 

  • Carr JP, Klessig DF (1989) The pathogenesis-related proteins of plants. In: Setlow JK (ed) Genetic engineering. Principles and methods. Plenum, New York, pp 65–109

    Google Scholar 

  • Chadha KC, Brown SA (1974) Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Can J Bot 52:2041–2046

    Article  CAS  Google Scholar 

  • Chakraborty U, Tongden C (2005) Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Curr Sci 89:384–389

    CAS  Google Scholar 

  • Chamnongpol S, Wilieekens H, Moeder W, Langebartels C, Sandermann H et al (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA 95:5818–5823

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Meeuse BJD (1971) Production of free indole by some Aroids. Acta Bot Neerl 20:627–635

    CAS  Google Scholar 

  • Chen Z, Ricigliano J, Klessig DF (1993) Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci USA 90:9533–9537

    Article  PubMed  CAS  Google Scholar 

  • Chen F, D’Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E (2003) An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J 36:577–588

    Article  PubMed  CAS  Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of the flower-inducing factor isolated from aphid honeydews as being salicylic acid. Plant Physiol 54:904–906

    Article  PubMed  CAS  Google Scholar 

  • Conrath U, Chen Z, Ricigliano J, Klessig DF (1995) Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic inhibit catalase activity in tobacco. Proc Natl Acad Sci USA 92:7143–7147

    Article  PubMed  CAS  Google Scholar 

  • Cooley DR, Manning WJ (1987) The impact of ozone on assimilate partitioning in plants: a review. Environ Pollut 47:95–113

    Article  PubMed  CAS  Google Scholar 

  • Coquoz JL, Buchala AJ, Meuwly PH, Metrux JP (1995) Arachidonic acid induces local but not systemic synthesis of salicylic acid and confers systemic resistance in potato plants to Phytophthora infestans and Alternaria solani. Phytopathology 85:1219–1224

    Article  CAS  Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998a) Changes in salicylic acid and antioxidants during induction of thermo tolerance in mustard seedlings. Plant Physiol 118:1455–1461

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998b) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Day DA, Arron GP, Laties GG (1980) Nature and control of respiratory pathway in plants: the interaction of cyanide-resistant respiration with cyanide-sensitive pathway. In: Davies DD (ed) The biochemistry of plants: a comprehensive treaties, vol 2. Academic, New York, pp 197–241

    Google Scholar 

  • Dean JV, Mohammed LA, Fitzpatrick T (2005) The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta 221:287–296

    Article  PubMed  CAS  Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92:6602–6606

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dang JL (1994) Arabidopsis mutants stimulating disease resistance response. Cell 77:565–577

    Article  PubMed  CAS  Google Scholar 

  • Drazic G, Mihailovic N (2005) Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Physiol 168:511–517

    CAS  Google Scholar 

  • Durner J, Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6 dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci USA 92:11312–11316

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J BiolChem 271:28492–28501

    CAS  Google Scholar 

  • El-Basyouni S, Chen D, Ibrahim RK, Neish AC, Towers GHN (1964) The biosynthesis of hydroxy benzoic acids in higher plants. Phytochemistry 3:485–492

    Article  CAS  Google Scholar 

  • Ellis BE, Amrhein N (1971) The “NIH shift” during aromatic ortho hydroxylation in higher plants. Phytochemistry 10:3069–3072

    Article  CAS  Google Scholar 

  • Elthon TE, Mclntosh L (1987) Identification of the alternative terminal oxidase of higher plant mitochondria. Proc Natl Acad Sci USA 84:8399–8403

    Article  PubMed  CAS  Google Scholar 

  • Elthon TE, Nickels RL, McIntosh L (1989) Mitochondrial events during the development of thermogenesis in Sauromatum guttatum (Schott). Planta 180:82–89

    Article  CAS  Google Scholar 

  • Enyedi AJ, Yalpani N, Sliverman P, Raskin I (1992) Signal molecule in systemic plant resistance to pathogens and pests. Cell 70:879–886

    Article  PubMed  CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica 41:281–284

    Article  CAS  Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lopez-Delago H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    Article  PubMed  CAS  Google Scholar 

  • Fujioka S, Yamaguchi I, Muorfushi N, Takahashi N, Kaihara S, Takimoto A (1983) The role of plant hormones and benzoic acid in flowering of Lemna paucicostata 151 and 381. Plant Cell Physiol 24:241–246

    Article  CAS  Google Scholar 

  • Fujioka S, Yamaguchi I, Murofushi N, Takahashi N, Kaihara S et al (1985) The role of benzoic acid and plant hormones in flowering of Lemna gibba G3. Plant Cell Physiol 26:655–659

    CAS  Google Scholar 

  • Fujioka S, Yamaguchi I, Muorfushi N, Takahashi N, Kaihara S et al (1986) The influence of nicotinic acid and plant hormones on flowering in Lemna. Plant Cell Physiol 27:109–116

    CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G et al (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  PubMed  CAS  Google Scholar 

  • Ghai N, Setia RC, Setia N (2002) Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphology 52:83–87

    Google Scholar 

  • Glass ADM (1973) Influence of phenolic acids on ion uptake: I. Inhibition of phosphate uptake. Plant Physiol 51:1037–1041

    Article  PubMed  CAS  Google Scholar 

  • Glass ADM (1974) Influence of phenolic acids upon ion uptake: III. Inhibition of potassium absorption. J Exp Bot 25:1104–1113

    Article  CAS  Google Scholar 

  • Goyal A, Tolbert NE (1989) Variations in the alternative oxidase in Chlamydomonas grown in air or high CO2. Plant Physiol 89:958–962

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Guo A, Klessig DF, Ausubel FM (1994) Programmed cell death in plants: a pathogen-triggered response activated with multiple defense functions. Cell 77:551–563

    Article  PubMed  CAS  Google Scholar 

  • Griffiths LA (1958) Occurrence of gentisic acid in plant tissues. Nature 182:733–734

    Article  CAS  Google Scholar 

  • Guan L, Scandalios JG (1995) Developmentally related responses of maize catalase genes to salicylic acid. Proc Natl Acad Sci USA 92:5930–5934

    Article  PubMed  CAS  Google Scholar 

  • Gutknecht J (1990) Salicylate and proton transport through lipid bilayer membranes: a model for salicylate-induced uncoupling and swelling in mitochondria. J Membr Biol 115:253–260

    Article  PubMed  CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Hamada AM (1998) Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Academic, Dordrecht, pp 2581–2584

    Google Scholar 

  • Hamada AM, Al-Hakimi AMA (2001) Salicylic acid versus salinity-drought induced stress on wheat seedlings. Rostl Vyr 47:444–450

    CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  • Harborne JB (1980) Plant phenolics. In: Bell EA, Charlwood BV (eds) Secondary plant products. Springer, Berlin, pp 329–402

    Chapter  Google Scholar 

  • Harper JP, Balke NE (1981) Characterization of the inhibition of K+ absorption ion in oat roots by salicylic acid. Plant Physiol 68:1349–1351

    Article  PubMed  CAS  Google Scholar 

  • Hayat S, Hasan SA, Fariduddin Q, Ahmad A (2008) Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J Plant Interact 3:297–304

    Article  CAS  Google Scholar 

  • He YL, Liu YL, Cao WX, Huai MF, Xu BG, Huang BG (2005) Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci 45:988–995

    Article  CAS  Google Scholar 

  • Hew CS (1987) The effect of 8-hydroxyquinoline sulphate, acetylsalicylic acid and sucrose on bud opening of Oncidium flowers. J Hort Sci 62:75–78

    CAS  Google Scholar 

  • Hirt H (1997) Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci 2:11–15

    Article  Google Scholar 

  • Horvath E, Janda T, Szalai G, Paldi E (2002) In vitro salicylic acid inhibition of catalase activity in maize: differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Sci 163:1129–1135

    Article  CAS  Google Scholar 

  • Idrees M, Khan MMA, Aftab T, Naeem M, Hashmi N (2010) Salicylic acid induced physiological and biochemical changes in lemongrass varieties under water stress. J Plant Interact 5:293–303

    Article  CAS  Google Scholar 

  • James WO, Beevers H (1950) The respiration of Arum spadix. A rapid respiration, resistant to cyanide. New Phytol 49:453–474

    Article  Google Scholar 

  • Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Janda T, Szalai G, Antunovics ZS, Horvath E, Paldi E (2000) Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica 45:29–33

    Google Scholar 

  • Jeffrey L, Giraudt J (1998) Abscisic acid and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Google Scholar 

  • Jonak C, Heberle-Bors E, Hirt H (1994) MAP kinases: universal multipurpose signaling tools. Plant Mol Biol 24:407–416

    Article  PubMed  CAS  Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576

    Article  PubMed  CAS  Google Scholar 

  • Kapulnik Y, Yalpani N, Raskin I (1992) Salicylic induces cyanide-resistant respiration in tobacco cell-suspension cultures. Plant Physiol 100:1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2009) Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci Agric 66:180–187

    Article  CAS  Google Scholar 

  • Katz V, Fuchs A, Conrath U (2002) Pretreatment with salicylic acid primes parsley cells for enhanced ion transport following elicitation. FEBS Lett 520:53–57

    Article  PubMed  CAS  Google Scholar 

  • Kauss H, Jeblick W (1995) Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol 108:1171–1178

    PubMed  CAS  Google Scholar 

  • Kauss H, Jeblick W (1996) Influence of salicylic acid on the induction of competence for H2O2 elicitation. Plant Physiol 111:755–763

    PubMed  CAS  Google Scholar 

  • Khurana JP, Cleland CF (1992) Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna Paucicostata LP6. Plant Physiol 100:1541–1546

    Article  PubMed  CAS  Google Scholar 

  • Khurana JP, Maheswari SC (1980) Some effects of salicylic acid on growth and flowering in Spirodela polyrrhiza SP20. Plant Cell Physiol 21:923–927

    CAS  Google Scholar 

  • Khurana JP, Maheswari SC (1987) Floral induction in Wolffia microscopica by non-inductive long days. Plant Cell Physiol 24:907–912

    Google Scholar 

  • Korkmaz A (2005) Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low temperature germination and emergence of sweet pepper. Hort Sci 40:197–200

    CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov VV, Shevyakova NI (1999) Proline under stress conditions: biological role, metabolism, and regulation. Russ J Plant Physiol 46:274–289

    Google Scholar 

  • Lamarck JB (1778) Flore Francaise 3. L’Emprimerie Royale, Paris, pp 537–539

    Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiol 128:682–695

    Article  PubMed  CAS  Google Scholar 

  • Larque-Saavedra A (1978) The antitranspirant effect of acetylsalicylic acid on Phaseolus vulgaris L. Physiol Plant 43:126–128

    Article  CAS  Google Scholar 

  • Lee JS (1995) Effect of salicylic acid and its analogues on stomatal closing in Commelina communis L. J Korean Environ Sci Soc 4:317–321

    Google Scholar 

  • Lee JS (1998) The mechanism of stomatal closing by salicylic acid in Commelina communis L. J Plant Biol 41:97–102

    Article  Google Scholar 

  • Lee HI, Raskin I (1999) Purification, cloning and expression of a pathogen inducible UDP-glucose:salicylic acid glucosyltransferase from tobacco. J Biol Chem 274:36637–36642

    Article  PubMed  CAS  Google Scholar 

  • Lee TT, Skog F (1965) Effect of substituted phenols on bud formation and growth of tobacco tissue culture. Physiol Plant 18:386–402

    Article  CAS  Google Scholar 

  • Lee S, Kim S-G, Park C-M (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188:626–637

    Article  PubMed  CAS  Google Scholar 

  • León J, Yalpani N, Raskin I, Lawton MA (1993) Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiol 103:323–328

    PubMed  Google Scholar 

  • León J, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108(1673–1):678

    Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:166–222

    Article  Google Scholar 

  • Levitan H, Barker JL (1972) Salicylate: a structure-activity study of its effects on membrane permeability. Science 126:1423–1425

    Article  Google Scholar 

  • Lindquist S (1986) The heat shock response. Annu Rev Biochem 45:39–72

    Google Scholar 

  • Linthorst HJM, Melchers LS, Mayer A, van Roekel JSC, Cornelissen BJC, Bol JF (1990) Analysis of gene families encoding acidic and basic β-1, 3-glucanase of tobacco. Proc Natl Acad Sci USA 87:8756–8760

    Article  PubMed  CAS  Google Scholar 

  • Llusia J, Penuelas J, Munne-Bosch S (2005) Sustained accumulation of methyl salicylate alters antioxidant protection and reduces tolerance of holm oak to heat stress. Physiol Plant 124:353–361

    Article  CAS  Google Scholar 

  • Lopez-Delgado H, Dat JF, Foyer CH, Scott IM (1998) Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot 49:713–720

    CAS  Google Scholar 

  • Macri F, Vianello A, Pennazio S (1986) Salicylate-collapsed membrane potential in pea stem mitochondria. Physiol Plant 67:136–140

    Article  CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in resistance the response of tobacco to viral infection. Science 250:1004–1006

    Article  Google Scholar 

  • Manthe B, Schultz M, Schnable H (1992) Effects of salicylic acid on growth and stomatal movements of Vicia faba L.: evidence for SA metabolism. J Chem Ecol 18:1525–1539

    Article  CAS  Google Scholar 

  • Mardani H, Bayat H, Saeidnejad AH, Rezaie EE (2012) Assessment of salicylic acid impacts on seedling characteristic of cucumber (Cucumis sativus L.) under water stress. Not Sci Biol 4:112–115

    CAS  Google Scholar 

  • Martinez de IIarduya O, Xie Q, Kaloshian I (2003) Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol Plant Microbe Interact 16:699–708

    Article  Google Scholar 

  • Mauch F, Mausch-Mani B, Gaille C, Kull B, Haas D, Reimmann C (2001) Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J 25:62–77

    Article  Google Scholar 

  • Meeuse BJD (1985) Sauromatum. In: Halevy HA (ed) Handbook of flowering. CRC Press, Boca Raton, pp 321–327

    Google Scholar 

  • Meeuse BJD, Raskin I (1988) Sexual reproduction in the arum lily family, with emphasis on thermogenicity. Sex Plant Reprod 1:3–15

    Article  Google Scholar 

  • Metraux JP, Burkhart W, Moyer M, Dincher S et al (1989) Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc Natl Acad Sci USA 86:896–900

    Article  PubMed  CAS  Google Scholar 

  • Metraux JP, Signer H, Ryals JA, Ward E, Wyss-Benz M et al (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz K-J (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed  CAS  Google Scholar 

  • Mills PR, Woods RKS (1984) The effects of polyacrylic acid, acetylsalicylic acid and salicylic acid on resistance of cucumber to Colletotrichum lagenarium. Phytopathol Z 111:209–216

    Article  CAS  Google Scholar 

  • Minnick L, Kilpatrick M (1939) Acid-base equilibria in aqueous and nonaqueous solutions. J Phys Chem 43:259–268

    Article  CAS  Google Scholar 

  • Mishra A, Choudhuri MA (1997) Ameliorating effects of salicylic acid on lead and mercury induced inhibition of germination and early seedling growth of two rice cultivars. Seed Sci Technol 25:263–270

    Google Scholar 

  • Mishra A, Choudhuri MA (1999) Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol Plant 42:409–415

    Article  CAS  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants signaling through MAP kinase networks in plants. Arch Biophys Biochem 452:55–68

    Article  CAS  Google Scholar 

  • Moons A, Prinsen E, Van Montagu M (1997) Antagonistic effect of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    PubMed  CAS  Google Scholar 

  • Moore AL, Bonner WD Jr (1982) Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol 70:1271–1276

    Article  PubMed  CAS  Google Scholar 

  • Mori IC, Pinontoan R, Kawano T, Muto S (2001) Involvement of superoxide generation in salicylic acid induced stomata closure in Vicia faba. Plant Cell Physiol 42:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  PubMed  CAS  Google Scholar 

  • Munne-Bosch S, Penuelas J, Llusia J (2007) A deficiency in salicylic acid alters isoprenoid accumulation in water-stressed NahG transgenic Arabidopsis plants. Plant Sci 172:756–762

    Article  CAS  Google Scholar 

  • Nagao RT, Kimpel JA, Vierling E, Key JL (1986) The heat shock response: a comparative analysis. In: Miflin BJ (ed) Oxford surveys of plant molecular and cell biology. Oxford University Press, Oxford, pp 384–438

    Google Scholar 

  • Nanda KK, Kumar S, Sood V (1976) Effect of gibberellic acid and some phenols on flowering of Impatiens balsamina, a qualitative short-day plant. Physiol Plant 38:53–56

    Article  CAS  Google Scholar 

  • Navarre DA, Mayo D (2004) Differential characteristics of salicylic acid-mediated signaling in potato. Physiol Mol Plant Pathol 64:179–188

    Article  CAS  Google Scholar 

  • Nemeth M, Janda T, Eszter J, Horvath E, Paldi E, Szalai G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    Article  CAS  Google Scholar 

  • Oota Y (1972) The response of Lemna Gibba G3 to a single long day in the presence of EDTA. Plant Cell Physiol 13:375–380

    Google Scholar 

  • Oota Y (1975) Short-day flowering of Lemna gibba G3 induced by salicylic acid. Plant Cell Physiol 13:1131–1135

    Google Scholar 

  • Pal M, Szalai G, Hovarth E, Janda T, Paldi E (2002) Effect of salicylic acid during heavy metal stress. In: Proceedings of the 7th Hungarian congress on plant physiology, pp 119–120

    Google Scholar 

  • Pancheva TV, Popova LP (1998) Effect of salicylic acid on the synthesis of ribulose-1, 5-bisphosphate carboxylase/oxygenase in barley leaves. J Plant Physiol 152:381–386

    Article  CAS  Google Scholar 

  • Pancheva TV, Popova LP, Uzunova AN (1996) Effects of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57–63

    Article  CAS  Google Scholar 

  • Panda SK, Patra HK (2007) Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol Plant 29:567–575

    Article  CAS  Google Scholar 

  • Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100:264–273

    Article  CAS  Google Scholar 

  • Pesci L (1987) ABA induced proline accumulation in barley leaf segments: dependence on protein synthesis. Physiol Plant 71:287–291

    Article  CAS  Google Scholar 

  • Pieterse AH, Muller LJ (1977) Induction of flowering in Lemna gibba G3 under short-day conditions. Plant Cell Physiol 18:45–53

    CAS  Google Scholar 

  • Popova LP, Maslenkova LT, Yordonava RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  PubMed  CAS  Google Scholar 

  • Procter W (1843) Observations on the volatile oil of Betula lenta, and on gaultherin, a substance which, by its decomposition, yield that oil. Am J Pharm 15:241

    Google Scholar 

  • Rai VK, Sharma SS, Sharma S (1986) Reversal of ABA-induced stomatal closure by phenolic compounds. J Exp Bot 37:129–134

    Article  CAS  Google Scholar 

  • Rajasekaran LR, Stiles A, Caldwell CD (2002) Stand establishment in processing carrots- Effects of various temperature regimes on germination and the role of salicylates in promoting germination at low temperatures. Can J Plant Sci 82:443–450

    Article  CAS  Google Scholar 

  • Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol 115:137–149

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Lee HI, Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone induced cell death. Plant J 32:447–456

    Article  PubMed  CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    Article  CAS  Google Scholar 

  • Raskin I, Turner IM, Melander WR (1989) Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci USA 86:2214–2218

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Skubatz H, Tang W, Meeuse BJD (1990) Salicylic acid levels in thermogenic and non-thermogenic plants. Ann Bot 66:369–373

    CAS  Google Scholar 

  • Raskin I, Ehmann A, Melander WR, Meeuse BJD (1987) Salicylic acid-a natural inducer of heat production in Arum lilies. Science 237:1545–1556

    Article  Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91

    Article  PubMed  CAS  Google Scholar 

  • Rhoads DM, McIntossh L (1992) Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell 4:1131–1139

    PubMed  CAS  Google Scholar 

  • Rhoads DM, McIntossh L (1993) Cytochrome and alternative pathway respiration in tobacco: effect of salicylic acid. Plant Physiol 103:877–883

    PubMed  CAS  Google Scholar 

  • Rhoads DM, McIintosh L (1991) Isolation and characterization of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott). Proc Natl Acad Sci USA 88:2122–2126

    Article  PubMed  CAS  Google Scholar 

  • Rock CD (2000) Pathways to abscisic acid-regulated gene expression. New Phytol 148:357–396

    Article  CAS  Google Scholar 

  • Ross AF (1961) Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14:329–339

    Article  PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    PubMed  CAS  Google Scholar 

  • Sahu GK, Kar M, Sabat SC (2002) Electron transport activities of isolated thylakoids from wheat plants grown in salicylic acid. Plant Biol 4:321–328

    Article  CAS  Google Scholar 

  • Sahu GK, Kar M, Sabat SC (2010) Alteration in phosphate uptake potential of wheat plants co-cultivated with salicylic acid. J Plant Physiol 167:326–328

    Article  PubMed  CAS  Google Scholar 

  • Saitanis CJ, Karandinos MG (2002) Effects of ozone on tobacco (Nicotiana tabacum L.) varieties. J Agron Crop Sci 188:51–58

    Article  CAS  Google Scholar 

  • Scharfetter E, Rottenburg T, Kandeler R (1978) The effect of EDDHA and salicylic acid on flowering and vegetative development in Spirodela punctata. Zeitschrift fur Pflanzenphysiol 87:445–454

    CAS  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Serino L, Reimman C, Baur H, Beyeler M, Visca P, Hass D (1995) Structural genes for salicylates biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228

    Article  PubMed  CAS  Google Scholar 

  • Seth PN, Venketraman R, Maheshwari SC (1970) Studies on the growth and flowering of a short day plant. Wolfia microscopic. II. Role of metal ions and chelates. Planta 90:349–359

    Article  CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    Article  PubMed  CAS  Google Scholar 

  • Shah J, Klessig DF (1999) Salicylic acid: signal perception and transduction. In: Lebbenga K, Hall M, Hooykass PJJ (eds) Biochemistry and molecular biology of plant hormones. Elsevier, London, pp 513–541

    Chapter  Google Scholar 

  • Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (Sai 1) of Arabidopsis thaliana identified in a selective screening utilizing the SA-inducible expression of the tms2gene. Mol Plant Microbe Interact 10:69–76

    Article  PubMed  CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Sharma YK, Davis KR (1997) The effects of ozone on antioxidant responses in plants. Free Radical Biol Med 23:480–488

    Article  CAS  Google Scholar 

  • Sharma YK, Leon J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci USA 93:5099–5104

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    Article  CAS  Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Metraux JP, Raskin I (1995) Salicylic acid in rice (Biosynthesis, conjugation and possible role). Plant Physiol 108:633–639

    PubMed  CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Smith BN, Meeuse BJD (1966) Production of volatile amines and skatole at anthesis in some arum lily species. Plant Physiol 41:343–374

    Article  PubMed  CAS  Google Scholar 

  • Song JT (2006) Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Mol Cells 22:233–238

    PubMed  CAS  Google Scholar 

  • Storey BT (1976) Respiratory chain of plant mitochondria. XVIII. Point of interaction of the alternate oxidase with the respiratory chain. Plant Physiol 58:521–525

    Article  PubMed  CAS  Google Scholar 

  • Storey BT, Bahr JT (1969) The respiratory chain of plant mitochondria. II. Oxidative phosphorylation in skunk cabbage mitochondria. Plant Physiol 44:126–134

    Article  PubMed  CAS  Google Scholar 

  • Swamy PM, Smith BN (1999) Role of abscisic acid in plant stress tolerance. Curr Sci 9:1220–1227

    Google Scholar 

  • Szalai G, Tari I, Janda T, Pestenacz A, Paldi E (2002) Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biol Plant 43:637–640

    Article  Google Scholar 

  • Szepesi A, Csiszar J, Bajkan SZ, Gemes K, Horvath F, Erdei L et al (2005) Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biol Szegediensis 49:123–125

    Google Scholar 

  • Takimoto A, Kaihara S (1986) The mode of action of benzoic acid and some related compounds on flowering in Lemna Paucicostata. Plant Cell Physiol 27:1309–1316

    CAS  Google Scholar 

  • Tanaka O, Cleland F (1980) Comparison of the ability of salicylic acid and ferricyanide to induce flowering in the long day plant Lemna Gibba G3. Plant Physiol 65:1058–1061

    Article  PubMed  CAS  Google Scholar 

  • Tari I, Csiszar J, Szalai G, Horvath F, Pecsvaradi A, Kiss G et al (2002) Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biol Szegediensis 46:55–56

    Google Scholar 

  • Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236

    Article  CAS  Google Scholar 

  • Uzunova AN, Popova LP (2000) Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica 38:243–250

    Article  CAS  Google Scholar 

  • Van Herk AWH (1937) Die chemischen Vorgange im Sauromatum-Kolben. III. Mitteilung. Proc K Ned Akad Wet 40:709–719

    Google Scholar 

  • Van Loon LC (1983) The induction of pathogenesis-related proteins by pathogens and specific chemicals. Neth J Plant Pathol 88:265–273

    Article  Google Scholar 

  • Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJ (2000) Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol 18:779–783

    Article  PubMed  CAS  Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawahar R, Ward E, Uknes S, Kessmann H, Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959–969

    PubMed  CAS  Google Scholar 

  • Vicente R-S, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  Google Scholar 

  • Vlot AC, Liu PP, Cameron RK et al (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang LJ, Li SH (2006a) Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul 48:137–144

    Article  CAS  Google Scholar 

  • Wang LJ, Li SH (2006b) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Wang LJ, Li SH (2007) The effects of salicylic acid on distribution of 14C-assimilation and photosynthesis in young grape plants under heat stress. Acta Hort 738:779–7851

    CAS  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W et al (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34

    Article  PubMed  CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL et al (1991) Cooordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    PubMed  CAS  Google Scholar 

  • Wardlaw IF (1968) The control and pattern of movement of carbohydrates in plants. Bot Rev 34:79–105

    Article  Google Scholar 

  • Watanabe K, Fujita T, Takimoto A (1981) Relation between structure and flowering-inducing activity of benzoic acid derivatives in Lemna paucicostata 151. Plant Cell Physiol 20:847–850

    Google Scholar 

  • Weete JD (1992) Induced systemic resistance to Alternaria cassiae in sicklepod. Physiol Mol Plant Pathol 40:437–445

    Article  CAS  Google Scholar 

  • White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid inducible WRKY gene. Plant Mol Biol 64:293–303

    Article  PubMed  CAS  Google Scholar 

  • Yaeno T, Saito B, Katsuki T, Iba K (2006) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9:809–824

    Google Scholar 

  • Yalpani N, Silverman P, Wilson TMA, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818

    PubMed  CAS  Google Scholar 

  • Yalpani N, Leon J, Lawton MA, Raskin I (1993a) Pathway of salicylic acid biosynthesis in healthy and virus inoculated tobacco. Plant Physiol 103:315–321

    PubMed  CAS  Google Scholar 

  • Yalpani N, Shulaev V, Raskin I (1993b) Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco. Phytopathology 83:702–708

    Article  CAS  Google Scholar 

  • Yalpani N, Enyedi AJ, Leon J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–376

    Article  CAS  Google Scholar 

  • Yang ZM, Wang J, Wang SH, Xu LL (2003) Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217:168–174

    PubMed  CAS  Google Scholar 

  • Ye XS, Pan SQ, Kuc J (1989) Pathogenesis-related proteins and systemic resistance to blue mold and tobacco mosaic virus induced by tobacco mosaic virus, Perenospora tabacina and aspirin. Physiol Mol Plant Pathol 35:161–175

    Article  CAS  Google Scholar 

  • Yu D, Liu Y, Fan B, Klessig DF, Chen Z (1997) Is the High basal level of salicylic important for disease resistance in potato. Plant Physiol 115:343–349

    PubMed  CAS  Google Scholar 

  • Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) Effect of salicylic acid on salinity induced changes in Brassica juncea. J Integr Plant Biol 50:1–4

    Article  CAS  Google Scholar 

  • Zawoznik M, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    Article  CAS  Google Scholar 

  • Zhang S, Klessig DF (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9:809–824

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal K. Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Sahu, G.K. (2013). Salicylic Acid: Role in Plant Physiology and Stress Tolerance. In: Rout, G., Das, A. (eds) Molecular Stress Physiology of Plants. Springer, India. https://doi.org/10.1007/978-81-322-0807-5_9

Download citation

Publish with us

Policies and ethics