Ramanujan and Transcendence

  • M. Ram Murty
  • V. Kumar Murty


In his 1916 memoir entitled “On certain arithmetic function,” Ramanujan considered the three fundamental Eisenstein series P,Q, and R. In that paper, he derived a system of nonlinear differential equations satisfied by them. These equations played a fundamental role in the 1996 work of Nesterenko who calculated the transcendence degree of the field generated by the special values of these Eisenstein series. In this chapter, we discuss the significance of this work in transcendental number theory.




  1. 19.
    B.C. Berndt, Ramanujan’s Notebooks, Part II (Springer, Berlin, 1989) MATHCrossRefGoogle Scholar
  2. 20.
    B.C. Berndt, Ramanujan’s Notebooks, Part V (Springer, Berlin, 1998) MATHCrossRefGoogle Scholar
  3. 22.
    B.C. Berndt, Ramanujan reaches his hand from his grave to snatch your theorems from you. Asia Pac. Math. Newsl. 1(2), 8–13 (2011) MathSciNetGoogle Scholar
  4. 34.
    S. Chowla, A. Selberg, On Epstein’s zeta function. J. Reine Angew. Math. 227, 86–110 (1967) MathSciNetMATHGoogle Scholar
  5. 43.
    W. Duke, Continued fractions and modular functions. Bull. Am. Math. Soc. 42(2), 137–162 (2005) MathSciNetMATHCrossRefGoogle Scholar
  6. 44.
    D. Duverney, K. Nishioka, K. Nishioka, I. Shiokawa, Transcendence of Jacobi’s theta series and related results, in Number Theory, Eger, 1996 (de Gruyter, Berlin, 1998), pp. 157–168 Google Scholar
  7. 61.
    B. Gross, On an identity of Chowla and Selberg. J. Number Theory 11(3), 344–348 (1979). S. Chowla Anniversary issue MathSciNetMATHCrossRefGoogle Scholar
  8. 62.
    E. Grosswald, Die Werte der Riemannschen Zetafunktion an ungeranden Argumentstellen. Nachr. Akad. Wiss., Gottinger Math.-Phys. Kl. 2, 9–13 (1970) MathSciNetGoogle Scholar
  9. 64.
    S. Gun, M.R. Murty, P. Rath, Algebraic independence of values of modular forms. Int. J. Number Theory 7, 1065–1074 (2011) MathSciNetMATHCrossRefGoogle Scholar
  10. 65.
    S. Gun, M.R. Murty, P. Rath, Transcendental values of certain Eichler integrals. Bull. Lond. Math. Soc. 43(5), 939–952 (2011) MathSciNetMATHCrossRefGoogle Scholar
  11. 67.
    G.H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, 3rd edn. (Chelsea, New York, 1978) Google Scholar
  12. 101.
    C. Krattenthaler, T. Rivoal, W. Zudilin, Séries hypergéométriques basiques, q analogues des valeurs de la fonction zeta et séries d’Eisenstein. J. Inst. Math. Juissieu 5(1), 53–79 (2006) MathSciNetMATHCrossRefGoogle Scholar
  13. 107.
    S. Lang, Elliptic Functions, 2nd edn. (Springer, New York, 1987) MATHCrossRefGoogle Scholar
  14. 122.
    D.W. Masser, Elliptic Functions and Transcendence. Lecture Notes in Mathematics, vol. 437 (Springer, Berlin, 1975) MATHGoogle Scholar
  15. 135.
    M.R. Murty, P. Rath, Introduction to transcendental number theory (in press) Google Scholar
  16. 137.
    M.R. Murty, C. Smyth, R. Wang, Zeros of Ramanujan polynomials. J. Ramanujan Math. Soc. 26, 107–125 (2011) MathSciNetMATHGoogle Scholar
  17. 138.
    M.R. Murty, C. Weatherby, Special values of the gamma function at CM points. Int. J. Number Theory (in press) Google Scholar
  18. 142.
    Yu.V. Nesterenko, Algebraic independence for values of Ramanujan functions, in Introduction to Algebraic Independence Theory. Lecture Notes in Math., vol. 1752 (Springer, Berlin, 2001), pp. 27–46 CrossRefGoogle Scholar
  19. 158.
    S. Ramanujan, On the product \(\prod_{n=0}^{\infty}[1 + (\frac{x }{a+nd})^{3}]\). J. Indian Math. Soc. 7, 209–211 (1915) Google Scholar
  20. 159.
    S. Ramanujan, Some definite integrals. Messenger of Math. 44, 10–18 (1915) Google Scholar
  21. 163.
    S. Ramanujan, Proof of certain identities in combinatory analysis. Proc. Camb. Philos. Soc. 19, 214–216 (1919) Google Scholar
  22. 173.
    T. Rivoal, La fonction zeta de Riemann prend une infinité de valeurs irrationelles aux entiers impairs. C. R. Acad. Sci. Paris Sér. I Math. 331(4), 267–270 (2000) MathSciNetMATHCrossRefGoogle Scholar
  23. 175.
    L.J. Rogers, Second memoir on the expansion of certain infinite products. Proc. Lond. Math. Soc. 25(1), 318–343 (1894) CrossRefGoogle Scholar
  24. 177.
    I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbruche. Berliner Sitzungsber. 23, 301–321 (1917) Google Scholar
  25. 178.
    A. Selberg, Über einge arithmetische identitäten. Avh. Norske Vidensk. Akad. Oslo 1(8), (1936), 23s Google Scholar
  26. 207.
    D. Zagier, Elliptic Modular Forms and Their Applications, in The 1–2–3 of Modular Forms. Universitext (Springer, Berlin, 2008), pp. 1–103 Google Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • M. Ram Murty
    • 1
  • V. Kumar Murty
    • 2
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations