Advertisement

Prime Numbers and Highly Composite Numbers

  • M. Ram Murty
  • V. Kumar Murty
Chapter

Abstract

In 1915, Ramanujan wrote a long paper on “highly composite numbers.” This paper gives us a general method to analyse the growth of arithmetic functions. It is curious that this paper finds no discussion in Hardy’s “Twelve lectures.” In hindsight, we learn that the theory has a rich structure as well as interplay with other parts of number theory. Moreover, it is intimately connected with prime number theory and even the Riemann hypothesis.

Keywords

Prime Number Arithmetic Progression Maximal Order Riemann Hypothesis Prime Number Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 6.
    L. Alaoglu, P. Erdös, On highly composite and similar numbers. Trans. Am. Math. Soc. 58, 448–469 (1944) Google Scholar
  2. 16.
    R. Balasubramanian, K. Ramachandra, The place of an identity of Ramanujan in prime number theory. Proc. Indian Acad. Sci. 83A(4), 156–165 (1976) MathSciNetGoogle Scholar
  3. 39.
    P. Deligne, La conjecture de Weil, I. Publ. Math. IHES 43, 273–307 (1974) MathSciNetGoogle Scholar
  4. 51.
    T. Estermann, On the representation of a number as the sum of two products. Proc. Lond. Math. Soc. 31(2), 123–133 (1930) zbMATHCrossRefGoogle Scholar
  5. 60.
    C.C. Grosjean, Disproving a conjecture about an asymptotic formula of Ramanujan involving the divisor sums. Simon Stevin 53, 39–70 (1979) MathSciNetzbMATHGoogle Scholar
  6. 66.
    H. Halberstam, An asymptotic formula in the theory of numbers. Trans. Am. Math. Soc. 84, 338–351 (1957) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 67.
    G.H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, 3rd edn. (Chelsea, New York, 1978) Google Scholar
  8. 68.
    G.H. Hardy, J.E. Littlewood, Contributions to the theory of the Riemann zeta function and the distribution of primes. Acta Math. 41, 119–196 (1918) MathSciNetCrossRefGoogle Scholar
  9. 70.
    G.H. Hardy, S. Ramanujan, Asymptotic formulae for the distribution of integers of various types. Proc. Lond. Math. Soc. 16(2), 112–132 (1917) Google Scholar
  10. 72.
    G.H. Hardy, E.W. Wright, Introduction to the Theory of Numbers, 5th edn. (Oxford University Press, London, 1979) zbMATHGoogle Scholar
  11. 82.
    G. Hoheisel, Primzahlproblem in der Analysis. Berlin Math. Ges. Sitzungsber, 550–558 (1930) Google Scholar
  12. 84.
    A.E. Ingham, Some asymptotic formulae in the theory of numbers. Journal of the London Mathematical Society, 202–208 (1927) Google Scholar
  13. 85.
    A.E. Ingham, A note on Riemann’s ζ-function and Dirichlet’s L-functions. J. Lond. Math. Soc. 5, 107–112 (1930) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 99.
    S. Knapowski, P. Turan, Comparative prime number theory, I–VIII. Acta Math. Hung. 13, 299–364 (1962) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 103.
    J. Lagarias, An elementary problem equivalent to the Riemann hypothesis. Am. Math. Mon. 109, 534–543 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 105.
    E. Landau, Über einige ältere Vermutungen und Behauptungen in der Primzahltheorie. Math. Zeit. 1, 1–24 (1918) (and 213–219) zbMATHCrossRefGoogle Scholar
  17. 112.
    J.E. Littlewood, Distribution des nombres premiers. C. R. Acad. Sci. Paris 158, 1869–1872 (1914) zbMATHGoogle Scholar
  18. 127.
    Y. Motohashi, The binary additive divisor problem. Ann. Sci. Éc. Norm. Super. 27, 529–572 (1994) MathSciNetzbMATHGoogle Scholar
  19. 128.
    M.R. Murty, Oscillations of Fourier coefficients of modular forms. Math. Ann. 262, 431–446 (1983) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 131.
    M.R. Murty, Problems in Analytic Number Theory, 2nd edn. (Springer, New York, 2005) Google Scholar
  21. 145.
    J.L. Nicolas, Répartition des nombres hautement composés de Ramanujan. Can. J. Math. 23, 116–130 (1971) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 146.
    J.L. Nicolas, Grandes valeurs des fonctions arithmétiques. Sém. Delange-Pisot-Poitou, Paris, no. G20, 5 p. (1974/75) Google Scholar
  23. 147.
    J.L. Nicolas, On highly composite numbers, in Ramanujan Revisited, ed. by G. Andrews, et al. (Academic Press, San Diego, 1988), pp. 215–244 Google Scholar
  24. 160.
    S. Ramanujan, Highly composite numbers. Proc. Lond. Math. Soc. 14(2), 347–400 (1915) zbMATHCrossRefGoogle Scholar
  25. 166.
    S. Ramanujan, Highly composite numbers, annotated and with a foreword by Jean-Louis Nicolas and Guy Robin. Ramanujan J. 1(2), 119–153 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 174.
    G. Robin, Estimation de la fonction de Tchebycheff θ sur le k-ieme nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n. Acta Arith. 42, 367–389 (1983) MathSciNetzbMATHGoogle Scholar
  27. 195.
    P.L. Tchebycheff, Lettre de M. le professeur Tchebycheff à M. Fuss sur un nouveau théorème relatif aux nombres premiers dans la forme 4n+1 et 4n+3. Bull. Cl. Phys.-Math. Acad. St. Petersburg 11, 208 (1853) Google Scholar
  28. 198.
    A. Walfisz, Weylsche Exponential Summen in der Neueren Zahlentheorie (VEB Deutscher Verlag der Wissenschaften, Berlin, 1963) Google Scholar
  29. 203.
    S. Wigert, Sur l’ordre de grandeur du nombre de diviseurs d’un entire. Ark. Mat. 3(18), 1–9 (1907) Google Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • M. Ram Murty
    • 1
  • V. Kumar Murty
    • 2
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations