Texture Analysis and Defect Classification for Fabric Images Using Regular Bands and Quadratic Programming

  • R. Obula Konda Reddy
  • B. Eswara Reddy
  • E. Keshava Reddy
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 174)


Defect detection is a key problem in quality control for many industrial fields like wallpaper scanning, ceramic flow detection and fabric inspection. For a long time the fabric defects inspection process is still carried out with human visual inspection, and thus, insufficient and costly. Therefore, automatic fabric defect inspection is required to reduce the cost and time waste caused by defects. Many techniques have been developed for detection of defects for fabrics through the years using neural networks, Fourier transform. However, most of the methods mentioned above are mainly designed for un-patterned fabric inspection. In this paper, the work is concentrated on the patterned texture inspection of the fabrics, using regular bands and enhancement of these images using linear quadratic programming.


Texture analysis Regular bands Defect images Linear quadratic programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amet, A.L., Ertuzun, A., Ercil, A.: An efficient method for texture defect detection: Sub-band domain co-occurrence matrices. Image Vis. Comput. 18, 543–553 (2000)CrossRefGoogle Scholar
  2. 2.
    Wang, C., Ye, Z.: Brightness preserving histogram equalization with maximum entropy: A variational perspective. IEEE Trans. on Consumer Electronics 51(4), 1326–1334 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Escofet, J., Navarro, R., Millán, M.S., Pladellorens, J.: Detection of local defects in textile webs using Gabor filters. In: Refregier, P. (ed.) Vision Systems: New Image Processing Techniques. Proceedings SPIE, vol. 2785, pp. 163–170 (1996)Google Scholar
  4. 4.
    Escofet, J., Navarro, R., Millan, M.S., Pladellorens, J.: Detection of local defects in textile webs using Gabor filters. Opt. Eng. 37(8), 2297–2307 (1998)CrossRefGoogle Scholar
  5. 5.
    Hu, M.C., Tsai, I.S.: Fabric Inspection Based on best Wavelet Packet Bases. Textile Res. J. 70(8), 662–670 (2000)CrossRefGoogle Scholar
  6. 6.
    Ngan, H.Y.T., Pang, G.K.H.: Novel method for patterned fabric inspection using Bollinger bands. Optical Engineering, Society of Photo-Optical Engineers (August 2006)Google Scholar
  7. 7.
    Ngan, H.Y.T., Pang, G.K.H.: Regularity Analysis for Patterned Texture Inspection. IEEE 6(1), 131–144 (2009)Google Scholar
  8. 8.
    Ngan, H.Y.T., Pang, G.K.H., Yung, S.P., Ng, M.K.: Wavelet based methods on patterned fabric defect detection. Pattern Recognit. 38(4), 559–576 (2005)CrossRefGoogle Scholar
  9. 9.
    Jasper, W.J., Garnier, S.J., Potlapalli, H.: Texture characterization and defect detection using adaptive wavelets. Opt. Eng. 35(11), 3140–3149 (1996)CrossRefGoogle Scholar
  10. 10.
    Kang, T.J., et al.: Automatic recognition of Fabric Weave Patterns by Digital Image Analysis. Textile Res. J. 69(2), 77–83 (1999)CrossRefGoogle Scholar
  11. 11.
    Kang, T.J., et al.: Automatic Structure Analysis and Objective Evaluation of Woven Fabric Using Image Analysis. Textile Res. J. 71(3), 261–270 (2001)CrossRefGoogle Scholar
  12. 12.
    Chin, R.T., Harlow, C.A.: Automated visual inspection: A survey. IEEE Trans. Pattern Anal. Machine Intell. PAMI-4(6), 557–573 (1982)CrossRefGoogle Scholar
  13. 13.
    Tsai, I.S., Hu, M.C.: Automatic Inspection of Fabric Defects Using an Artificial Neural Network Technique. Textile Res. J. 66(7), 474–482 (1996)CrossRefGoogle Scholar
  14. 14.
    Jen, T.-C., Wang, S.-J.: Image Enhancement Based on Quadratic Programming. In: 15th IEEE Conference on ICIP 2008, pp. 3164–3167 (2008)Google Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • R. Obula Konda Reddy
    • 1
  • B. Eswara Reddy
    • 2
  • E. Keshava Reddy
    • 2
  1. 1.SSITSRayachotiIndia
  2. 2.JNTUAAnantapurIndia

Personalised recommendations