Timely Prediction of Tsunami Using under Sea Earthquake Signals

  • Sushil Kumar
  • Rama Sushil
  • Anilesh Kumar
  • Vijay Kumar Ray
  • Pratik Ghosh
  • Sachin Kumar
  • Swati Shikha
  • Sourabh Kumar
  • Ajay Paul
  • Anupam Yadav
  • Kusum Deep
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 131)

Abstract

The Honshu, Japan earthquake of 11th March 2011, caused severe hazard in Japan and neighboring countries. It revealed the need and importance of warning system for Tsunami generation to minimize the casualties. Seismograms of the Honshu earthquake event (recorded by broadband seismograms, being operated in the NW Himalaya by Wadia Institute of Himalayan Geology, Dehradun) are used for quick prediction of tsunami. The frequency content of these seismograms is studied and energy content in high frequencies is calculated, which is used to give tsunami warning. It is observed that wavelet coefficients for frequencies greater than 0.33 Hz tsunamigenic earthquakes do not show significant energy in the spectrum. However, significant energy is found in wavelet spectrum of non-tsunamigenic earthquake. In this paper we present the wavelet analysis on the Honshu, Japan earthquake of 11th March, 2011. Some other global tsunamigenic and non-tsunamigenic events are also analyzed for test and comparison purpose of the methodology used.

Keywords

Sea Earthquake Tsunami warning Hazard deduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chamoli, A., Bansal, A.R., Dimri, V.P.: Wavelet and rescaled range approach for the Hurst coefficient for short and long time series. Comput. Geosci. 33, 83–93 (2007)CrossRefGoogle Scholar
  2. 2.
    Chew, S.H., Kuenza, K.: Detecting tsunamigenesis from under sea earthquake signals. J. Asian Earth Sciences 36, 84–92 (2009)CrossRefGoogle Scholar
  3. 3.
    Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conferences Series in Applied Mathematics, vol. 61. SIAM, Philadelphia (1992)MATHCrossRefGoogle Scholar
  4. 4.
    Foufoula-Georgiou, E., Kumar, P.: Wavelets in Geophysics. Academic Press, San Deigo (1944)Google Scholar
  5. 5.
    Goupillaud, P., Grossmann, A., Morlet, J.: Cycle-octave andrelated transforms in seismic signal analysis. Geo Exploration 23, 85–102 (1984)Google Scholar
  6. 6.
    Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integral wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Lockwood, O.G., Kanamori, H.: Wavelet analysis of the seismograms of the 2004 Sumatra-Andaman earthquake and its application to tsunami early warning. Geochemistry Geophysics Geosystems 7(9), Q090131–Q0901310 (2006), doi:10.1029/2006GC001272CrossRefGoogle Scholar
  8. 8.
    Simons, F.J., Ben, D.E.D., Richard, M.A.: Automatic detection and rapid determination of earthquake magnitude by wavelet multiscale analysis of the primary arrival. Earth Planet. Sci. Lett. 250, 214–223 (2006)CrossRefGoogle Scholar
  9. 9.
    Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. B. Am. Meteorol. Soc. 79(1), 61–78 (1998)CrossRefGoogle Scholar

Copyright information

© Springer India Pvt. Ltd. 2012

Authors and Affiliations

  • Sushil Kumar
    • 1
  • Rama Sushil
    • 2
  • Anilesh Kumar
    • 3
  • Vijay Kumar Ray
    • 3
  • Pratik Ghosh
    • 3
  • Sachin Kumar
    • 3
  • Swati Shikha
    • 3
  • Sourabh Kumar
    • 3
  • Ajay Paul
    • 1
  • Anupam Yadav
    • 4
  • Kusum Deep
    • 4
  1. 1.Wadia Institute of Himalayan GeologyDehradunIndia
  2. 2.Shri Guru Ram Rai Institute of Technology and ScienceDehradunIndia
  3. 3.The ICFAI UniversityDehradunIndia
  4. 4.Indian Institute of TechnologyRoorkeeIndia

Personalised recommendations