Methods for Estimation of Uncertainties in Geothermobarometry

  • T. N. Jowhar
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 131)


The assignment of a realistic uncertainty in any measured and computed quantity is important in all physical sciences. The advent of large internally consistent thermodynamic data bases and the development of multi-reaction techniques for P-T estimates in metamorphic and igneous rocks have brought revolution in the field of geothermobarometry. Assignment of uncertainties to P-T estimates is important, because these uncertainties have significant effect on the confidence of a tectonic interpretation. It is, therefore, necessary to perform and report error propagation calculations while providing P-T estimates, as without the uncertainty estimates, the results of the P-T calculations in metamorphic and igneous rocks are not complete. In this paper sources of uncertainties, the propagation of these uncertainties and estimation of these values are discussed. Monte Carlo Method, Numerical error propagation and High-Precision Relative Thermobarometry (ΔPT) approach for estimation of uncertainties in pressure-temperature with examples are presented and reviewed.


Geothermobarometry Uncertainties Error propagation Monte Carlo Method P-T estimates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, G.M.: Error propagation by the Monte Carlo method in geochemical calculations. Geochimica et Cosmochimica Acta 40, 1533–1538 (1976)CrossRefGoogle Scholar
  2. 2.
    Anderson, G.M.: Uncertainties in calculations involving thermodynamic data. In: Greenwood, H.J. (ed.) Short Course in Application of Thermodynamics to Petrology and Ore Deposits, Mineralogical Association of Canada, pp. 199–215 (1977a)Google Scholar
  3. 3.
    Anderson, G.M.: The accuracy and precision of calculated mineral dehydration equilibria. In: Fraser, D.G. (ed.) Thermodynamics in Geology, Reidel, Boston. NATO Advanced Studies Institute, Series C, pp. 115–136 (1977b)Google Scholar
  4. 4.
    Ashworth, J.R., Sheplev, V.S., Khlestov, V.V., Ananyev, V.A.: An analysis of uncertainty in non-eqilibrium and equilibrium geothermobarometry. Journal of Metamorphic Geology 22, 811–824 (2004)CrossRefGoogle Scholar
  5. 5.
    Berman, R.G.: Internally-consistent thermodynamic data for minerals in the system Na2O-K2O- CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology 29, 445–522 (1988)Google Scholar
  6. 6.
    Berman, R.G.: Thermobarometry using multi-equilibrium calculations: a new technique with petrological applications. Canadian Mineralogist 29, 833–855 (1991)Google Scholar
  7. 7.
    Berman, R.G.: WinTWQ (version 2.3): A software package for performing internally-consistent thermobarometric calculations. Geological Survey of Canada Open File 5462(revised), 41 p (2007)Google Scholar
  8. 8.
    Bevington, P.R., Robinson, K.D.: Data reduction and error analysis for the physical Sciences, 3rd edn., 325 p. McGraw-Hill, Boston (2003)Google Scholar
  9. 9.
    Carpenter, M.A., Putnis, A.: Cation order and disorder during crystal growth: some implica tions for natural mineral assemblages. In: Thompson, A.B., Rubie, D.C. (eds.) Metamprphic Reactions, Kinetics, Textures and de Formation, pp. 1–26. Springer, New York (1986)Google Scholar
  10. 10.
    Chatterjee, N.D., Kruger, R., Haller, G., Olbricht, W.: The Bayesian approach to an internally consistent thermodynamic database: theory, database, and generation of phase diagrams. Contributions to Mineralogy and Petrology 133, 149–168 (1998)CrossRefGoogle Scholar
  11. 11.
    Dachs, E.: Uncertainties in the activities of garnets and their propagation into geothermo ba rometry. European Journal of Mineralogy 6, 291–295 (1994)Google Scholar
  12. 12.
    De Capitani, C., Petrakakis, K.: The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist 95, 1006–1016 (2010)CrossRefGoogle Scholar
  13. 13.
    Gordon, T.M.: Generalised thermobarometry: Solution of the inverse chemical equilib rium using data for individual species. Geochimica et Cosmochimica Acta 56, 1793–1800 (1992)CrossRefGoogle Scholar
  14. 14.
    Gordon, T.M.: WEBINVEQ THERMOBAROMETRY: An experiment in providing inter active scientific software on the World Wide Web. Computers and Geosciences 24, 43–49 (1998)CrossRefGoogle Scholar
  15. 15.
    Helgeson, H.C., Delany, J.M., Nesbitt, H.W., Bird, D.K.: Summary and critique of the thermodynamic properties of rock forming minerals. American Journal of Science 278A, 1–229 (1978)Google Scholar
  16. 16.
    Hodges, K.V., Crowley, P.: Error estimation and empirical geothermobarometry for pe litic systems. American Mineralogist 70, 702–719 (1985)Google Scholar
  17. 17.
    Hodges, K.V., McKenna, L.W.: Realistic propagation of uncertainties in geologic thermobarometry. American Mineralogist 72, 671–680 (1987)Google Scholar
  18. 18.
    Holland, T.J.B., Powell, R.: An enlarged and updated internally consistent thermody namic dataset with uncertainties and correlations: the system K2O- Na2O-CaO-MgO-MnO- FeO-Fe2O3-Al2O3- TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology 8, 89–124 (1990)CrossRefGoogle Scholar
  19. 19.
    Holland, T.J.B., Powell, R.: An internally consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology 16, 309–343 (1998)CrossRefGoogle Scholar
  20. 20.
    Jowhar, T.N.: A FORTRAN77 computer program for calculating thermodynamic proper ties of minerals at higher temperatures and pressures. Neues Jahrbuch fur Mh. Jg. H.5, 217–222 (1991)Google Scholar
  21. 21.
    Jowhar, T.N.: Crystal parameters of K-feldspar and geothermometry of Badrinath Crystal line Complex, Himalaya, India. Neues Jahrbuch fur Mineralogie Abhandlungen 166, 325–342 (1994)Google Scholar
  22. 22.
    Jowhar, T.N.: BGT: A FORTRAN 77 computer program for biotite-garnet geothermometry. Computers and Geosciences 25, 609–620 (1999)CrossRefGoogle Scholar
  23. 23.
    Jowhar, T.N.: Geobarometric constraints on the depth of emplacement of granite from the Ladakh batholith, Northwest Himalaya, India. Journal of Mineralogical and Petrologi cal Sciences 96, 256–264 (2001)CrossRefGoogle Scholar
  24. 24.
    Jowhar, T.N.: Computer programs for P-T calculations and construction of phase diagrams: Use of TWQ, WEBINVEQ and THERMOCALC. In: Rajan, S., Pandey, P.C. (eds.) Antarctic Geoscience, Ocean- Atmosphere Interaction and Paleoclimatology, National Centre for Antarctic & Ocean Research, Goa, pp. 248–262 (2005)Google Scholar
  25. 25.
    Jowhar, T.N.: Significance of chemical zoning in garnets. The Indian Mineralogist 41, 200–210 (2007)Google Scholar
  26. 26.
    Ku, H.H.: Notes on the use of propagation of error formulas. J. Res. NBSC Eng. Instrum. 70C, 263–273 (1966)Google Scholar
  27. 27.
    Loomis, T.P.: Compositional zoning of crystals: A record of growth and reaction history. In: Saxena, S.K. (ed.) Kinetics and Equilibrium in Mineral Reactions, pp. 1–60. Springer, New York (1983)CrossRefGoogle Scholar
  28. 28.
    Pandey, P., Rawat, R.S., Jowhar, T.N.: Structural state transformation in alkali feld spar: Evidence for post-crystallisation deformation from Proterozoic granite, Kumaun Himalaya, India. Journal of Asian Earth Sciences 25, 611–620 (2005)CrossRefGoogle Scholar
  29. 29.
    Powell, R.: Geothermometry and geobarometry: a discussion. Journal of the Geological Society of London 142, 29–38 (1985)CrossRefGoogle Scholar
  30. 30.
    Powell, R., Holland, T.J.B.: An internally consistent thermodynamic data set with un certainties and correlations: 3: Applications to geobarometry, worked examples and a computer program. Journal of Metamorphic Geology 6, 173–204 (1988)CrossRefGoogle Scholar
  31. 31.
    Powell, R., Holland, T.J.B.: Optimal geothermometry and geobarometry. American Mineralogist 79, 120–133 (1994)Google Scholar
  32. 32.
    Powell, R., Holland, T.J.B.: Course notes for “THERMOCALC” Workshop 2001: Calculating Metamorphic Phase Equilibria, on CD-ROM (2001)Google Scholar
  33. 33.
    Roddick, J.C.: Generalized numerical error analysis with applications to geochronology and thermodynamics. Geochimica et Cosmochimica Acta 51, 2129–2135 (1987)CrossRefGoogle Scholar
  34. 34.
    Scaillet, S.: Numerical error analysis in 40Ar/39Ar dating. Chemical Geology 162, 269–298 (2000)CrossRefGoogle Scholar
  35. 35.
    Selverstone, J.: Petrologic constraints on imbrication, metamorphism, and uplift in the SW Alps, Tauern window, eastern Alps. Tectonics 4, 686–704 (1985)CrossRefGoogle Scholar
  36. 36.
    Smith, D.G.W. (ed.): Short course in microbeam techniques. Mineralogical Association of Canada, 186 p (1976)Google Scholar
  37. 37.
    Tirone, M., Ganguly, J.: Garnet compositions as recorders of P-T-t history of metamor phic rocks. Gondwana Research 18, 138–146 (2010)CrossRefGoogle Scholar
  38. 38.
    Villagran, A., Huerta, G., Jackson, C.S., Sen, M.K.: Computational methods for pa rameter estimation in climate models. Bayesian Analysis 3, 823–850 (2008)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Worley, B., Powell, R.: High-precision relative thermobarometry: theory and a worked example. Journal of Metamorphic Geology 18, 91–101 (2000)CrossRefGoogle Scholar

Copyright information

© Springer India Pvt. Ltd. 2012

Authors and Affiliations

  1. 1.Wadia Institute of Himalayan GeologyDehra DunIndia

Personalised recommendations