Advertisement

A Brief Review on Modeling Approaches of Friction Dampers Used in Turbomachinery

  • Loveleen Kumar Bhagi
  • Vikas Rastogi
  • Pardeep Gupta
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 131)

Abstract

The present paper deals with a brief review on different modeling techniques used to model friction dampers in turbomachinery. It is not the intention of the author to provide a detailed survey on all the approaches. However, the main concentration is on finite element modeling and bondgraph modeling. The main purpose of this paper is to provide a detailed survey on various modeling approaches adopted in turbomachinery, especially kinematics modeling, finite element modeling, parametric modeling, harmonic balance analysis and bondgraph modeling. The usefulness of bondgraph modeling technique is underlined in this paper presenting several considerations in the model. The bondgraph is one of the most convenient ways to represent a system form the physical aspects in foreground. It has advantages of putting together multi-energy domain of the system in a single representation in a unified manner. A case study of bondgraph modeling of turbine blade has been presented along with friction damper.

Keywords

Turbine blade friction damper kinematic modeling finite element modeling bondgraph modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dewey, R.P., Rieger, N.F.: Survey of steam turbine blade failures. In: Proceeding of EPRI Workshop on Steam Turbine Reliability, Boston, MA (1982)Google Scholar
  2. 2.
    Ritchie, R.O., Boyce, B.L., Campbell, J.P., Roder, O., Thompson, A.W., Milligan, W.W.: Thresholds for high-cycle fatigue in a turbine engine Ti–6Al–4V alloy. International Journal of Fatigue 21, 653–662 (1999)CrossRefGoogle Scholar
  3. 3.
    Nolan, R.W.: Vibration of Marine-Turbine Blading. Trans. of A.S.M.E. 439–446 (1950)Google Scholar
  4. 4.
    Tokar, I.G., Zinkovskii, A.P., Matveev, V.V.: On the problem of improvement of the damping ability of rotor blades of contemporary gas-turbines engines. International Journal of Strength of Materials 35(4), 368–375 (2003)CrossRefGoogle Scholar
  5. 5.
    Griffin, J.H.: Friction damping of resonant stresses in gas turbine engine airfoils. ASME Journal of Engineering for Power 102(2), 329–333 (1980)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Rowett, F.E.: Elastic Hysteresis in Steel. Proceedings of Royal Society 89 (1914)Google Scholar
  7. 7.
    Allen, R.C.: Steam-Turbine Blading. Trans. of A.S.M.E., 689–710 (1940) Google Scholar
  8. 8.
    Petrov, E., Mare, L.D., Hennings, H., Elliott,R.: Forced Response of Mistuned Bladed Disks in Gas Flow: A Comparative Study of Predictions and Full-Scale Experimental Results. J. Eng. Gas Turbines Power. 132, 5 (2010)Google Scholar
  9. 9.
    Srinivasan, A.V., Cutts, D.G.: Dry friction damping mechanisms in engine blades. ASME J. Eng. Power. 105, 332–341 (1983)CrossRefGoogle Scholar
  10. 10.
    Den Hartog, J.P.: Forced vibrations with combined Coulomb and viscous friction. Trans. ASME, Paper APM 53(9), 107–115 (1931)Google Scholar
  11. 11.
    Cameron, T.M., Griffin, J.H., Kielb, R.E., Hoosac, T.M.: An Integrated Approach for Friction Damper Design. ASME J. Vib. Acoust. 112, 175–183 (1990)CrossRefGoogle Scholar
  12. 12.
    Pfeiffer, F., Hajek, M.: Stick-Slip Motion of Turbine Blade Dampers. Philosophical Transactions of the Royal Society of London, Series A 338(1651), 503–517 (1992)CrossRefGoogle Scholar
  13. 13.
    Dowell, E.H., Schwartz, H.B.: Forced Response of a Cantilever Beam With a Dry Friction Damper Attached, Part I: Theory. J. Sound Vib. 91, 255–267 (1983)MATHCrossRefGoogle Scholar
  14. 14.
    Ferri, A.A.: Friction Damping and Isolation Systems. ASME J. Vibr. Acoust. 117, 196–206 (1996)CrossRefGoogle Scholar
  15. 15.
    Cigeroglu, E., Lu, W., Menq, C.H.: One-Dimensional Dynamic Microslip Friction Model. ASME J. Sound Vib. 292, 881–898 (2006)CrossRefGoogle Scholar
  16. 16.
    Yang, B.D., Chu, M.L., Menq, C.H.: Stick–Slip Separation Analysis and Non-Linear Stiffness and Damping Characterization of Friction Contacts Having Variable Normal Load. Journal of Sound and Vibrations 210(4), 461–481 (1998)CrossRefGoogle Scholar
  17. 17.
    Petrov, E.P., Ewins, D.J.: Analytical formulation of friction interface elements for analysis of nonlinear multiharmonic vibrations of bladed discs. Transactions of ASME Journal of Turbomachinery 125(2), 364–371 (2003)CrossRefGoogle Scholar
  18. 18.
    Sanliturk, K.Y., Ewins, D.J.: Modeling Two-Dimensional Friction Contact and Its Application Using Harmonic Balance Method. J. Sound Vib. 193, 511–523 (1996)MATHCrossRefGoogle Scholar
  19. 19.
    Menq, C.H., Yang, B.D.: Non-Linear Spring Resistance and Friction Damping of Frictional Constraints Having Two -Dimensional Motion. J. Sound Vib. 217, 127–143 (1998)CrossRefGoogle Scholar
  20. 20.
    Yang, B.D., Menq, C.H.: Characterization of 3D Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint. J. Sound Vib. 217, 909–925 (1998)CrossRefGoogle Scholar
  21. 21.
    Chen, J.J., Menq, C.H.: Periodic Response of Blades Having Three-Dimensional Nonlinear Shroud Constraints. ASME J. Eng. Gas Turbines Power. 123, 901–909 (2000)CrossRefGoogle Scholar
  22. 22.
    Jareland, M., Csaba, G.: Friction damper mistuning of a bladed disk and optimization with respect to wear. In: Proceedings of the ASME Turbo Expo 2000. Paper 2000-GT-363, Munich, Germany (2000)Google Scholar
  23. 23.
    Jareland, M.: A parametric study of a cottage-roof damper and comparison with experimental results. In: Proceedings of the ASME Turbo Expo 2001. Paper 2001-GT-0275, New Orleans, Louisiana (2001)Google Scholar
  24. 24.
    Sanliturk, K.Y., Ewins, D.J., Stanbridge, A.B.: Underplatform dampers for turbine blades: Theoretical modeling, analysis, and comparison with experimental data. Journal of Engineering for Gas Turbines and Power 123, 919–929 (2001)CrossRefGoogle Scholar
  25. 25.
    Yang, B.D., Menq, C.H.: Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading: Part 1—Stick-Slip Contact Kinematics. ASME J. Eng. Gas Turbines Power. 120, 410–417 (1998)CrossRefGoogle Scholar
  26. 26.
    Yang, B.D., Menq, C.H.: Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading: Part 2—Prediction of Forced Response and Experimental Verification. ASME J. Eng. Gas Turbines Power. 120, 418–423 (1998)CrossRefGoogle Scholar
  27. 27.
    Menq, C.H., Chidamparam, P., Griffin, J.H.: Friction Damping of Two-Dimensional Motion and its Application in Vibration Control. Journal of Sound and Vibration 144(3), 421–447 (1991)CrossRefGoogle Scholar
  28. 28.
    Petrov, E.P., Ewins, D.J.: Generic friction models for time-domain vibration analysis of bladed disks. Journal of Turbomachinery 126, 184–192 (2004)CrossRefGoogle Scholar
  29. 29.
    Cigeroglu, E., Ning, A., Menq, C.H.: Forced Response Prediction of Constrained and Unconstrained Structures Coupled Through Frictional Contacts. ASME Journal of Engineering for Gas Turbines and Power. 131, 022505-1 (2009)Google Scholar
  30. 30.
    Berruti, T., Firrone, C.M., Gola, M.M.: Modeling Underplatform Dampers in Turbine Blade Vibrations. XXXII Congress Nazionale AIAS, Salerno (2003) Google Scholar
  31. 31.
    Firrone, C.M.: Measurement of the Kinematics of Two Underplatform Dampers with Different Geometry and Comparison with Numerical Simulation. Elsevier Journal of Sound and Vibration 323, 313–333 (2009)CrossRefGoogle Scholar
  32. 32.
    Ramaiah, P.V., Krishnaiah, G.: Modelling and Design of Friction Damper used for the Control of Vibration in a Gas-turbine Blade - A Microslip Approach. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221(8), 887–895 (2007)CrossRefGoogle Scholar
  33. 33.
    Allara, M.: A model for the characterization of friction contacts in turbine blades. Journal of Sound and Vibration 320, 527–544 (2009)CrossRefGoogle Scholar
  34. 34.
    Panning, L., Sextro, W., Popp, K.: Optimization of the contact geometry between turbine blades and underplatform dampers with respect to friction damping. ASME Turbo Expo Amsterdam. Giugno 2002, GT-2002-30429 (2002)Google Scholar
  35. 35.
    Panning, L., Sextro, W., Popp, K.: Spatial Dynamics of Tuned and Mistuned Bladed Disks with Cylindrical and Wedge-Shaped Friction Dampers. International Journal of Rotating Machinery 9, 219–228 (2003)CrossRefGoogle Scholar
  36. 36.
    Panning, L.: Symmetrical and Asymmetrical Underplatform Dampers for Turbine Blades. PAMM Proc. Appl. Math. Mech. 6, 251–252 (2006)CrossRefGoogle Scholar
  37. 37.
    Sanliturk, K.Y., Ewins, D.J., Elliott, R., Green, J.S.: Friction Damper Optimization: Simulation of Rainbow Tests. Journal of Engineering for Gas Turbines and Power 123, 930–939 (2001)CrossRefGoogle Scholar
  38. 38.
    Cigeroglu, E., Ozguven, H.N.: Nonlinear vibration analysis of bladed disks with dry friction dampers. Elsevier Journal of Sound and Vibration 295, 1028–1043 (2006)CrossRefGoogle Scholar
  39. 39.
    Ewins, D.J.: Control of vibration and resonance in aero engines and rotating machinery-An overview. International Journal of Pressure Vessels and Piping 87, 504–510 (2010)CrossRefGoogle Scholar
  40. 40.
    Berger, E.J., Krousgrill, C.M.: On friction damping modeling using bilinear hysteresis elements. ASME J. Vibr. Acoust. 124(3), 367–376 (2002)CrossRefGoogle Scholar
  41. 41.
    Cardona, A., Lerusse, A., Geradin, M.: Fast Fourier Nonlinear Vibration Analysis. Computational Mechanics 22(2), 128–142 (1998)MATHCrossRefGoogle Scholar
  42. 42.
    Berthillier, M., Dupont, C., Mondal, R., Barrau, J.J.: Blades forced response analysis with friction dampers. ASME Journal of Vibration and Acoustics 120, 468–474 (1998)CrossRefGoogle Scholar
  43. 43.
    Petrov, E.P., Ewins, D.J.: Analytical formulation of friction interface elements for analysis of nonlinear multi-harmonic vibrations of bladed disks. ASME Journal of Turbomachinery 125(2), 364–371 (2003)CrossRefGoogle Scholar
  44. 44.
    Poudou, O., Pierre, C.: Hybrid frequency-time domain methods for the analysis of complex structural systems with dry friction damping. In: Structural Dynamics and Materials Conference, Norfolk, VA, USA, vol. 1, pp. 111–124 (2003)Google Scholar
  45. 45.
    Nacivet, S., Pierre, C., Thouverez, F., Jezequel, L.: A dynamic Lagrangian frequency-time method for the vibration of dry-friction-damped systems. Journal of Sound and Vibration 265(1), 201–219 (2003)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Levitan, E.S.: Forced oscillation of a spring-mass system having combined coulomb and viscous damping. Journal of the Acoustical Society of America 32(10), 1265–1269 (1960)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Nayfeh, A., Mook, D.: Nonlinear Oscillations. John Wiley & Sons (1979)Google Scholar
  48. 48.
    Griffin, J.H.: Friction damping of resonant stress in gas turbine engine airfoils. Journal of Engineering for Power 102, 329–333 (1980)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Muszynska, A., Jones, D.I.: On tuned bladed disk dynamics: Some aspects of friction related mistuning. Journal of Sound and Vibration 86(1), 107–128 (1983)MATHCrossRefGoogle Scholar
  50. 50.
    Sinha, A., Griffin, J.H.: Effects of static friction on the forced response of frictionally damped turbine blades. Journal of Engineering for Gas Turbines and Power 106, 65–69 (1984)CrossRefGoogle Scholar
  51. 51.
    Sanliturk, K.Y., Imregun, M., Ewins, D.J.: Harmonic balance vibration analysis of turbine blades with friction dampers. Journal of Vibration and Acoustics 119, 96–103 (1997)CrossRefGoogle Scholar
  52. 52.
    Sinha, A., Griffin, J.H.: Friction damping of flutter in gas turbine engine airfoils. Journal of Aircraft 20(4), 372–375 (1983)CrossRefGoogle Scholar
  53. 53.
    Griffin, J.H., Sinha, A.: The interaction between mistuning and friction in the forced response of bladed disk assemblies. Journal of Engineering for Gas Turbines and Power 107, 205–211 (1985)CrossRefGoogle Scholar
  54. 54.
    Ren, Y., Beards, C.F.: A new receptance-based perturbative multi-harmonic balance method for the calculation of the steady state response of non-linear systems. Journal of Sound and Vibration 172(5), 593–604 (1994)MATHCrossRefGoogle Scholar
  55. 55.
    Panning, L., Sextro, W., Popp, K.: Optimization of interblade friction damper design. In: Proceedings of the ASME Turbo Expo 2000. Paper 2000-GT-541, Munich, Germany (2000)Google Scholar
  56. 56.
    Petrov, E.P., Ewins, D.J.: Method for analysis of nonlinear multiharmonic vibrations of mistuned bladed disks with scatter of contact interface characteristics. Journal of Turbomachinery 127, 128–136 (2005)CrossRefGoogle Scholar
  57. 57.
    Petrov, E.P., Ewins, D.J.: Effects of Damping and Varying Contact Area at Blade-Disk Joints in Forced Response Analysis of Bladed Disk Assemblies. Journal of Turbomachinery 128, 403–410 (2006)CrossRefGoogle Scholar
  58. 58.
    Borrajo, J.M., Zucca, S., Gola, M.M.: Analytical formulation of the Jacobian matrix for non-linear calculation of the forced response of turbine blade assemblies with wedge frictiondampers. International Journal of Non-Linear Mechanics 41, 1118–1127 (2006)CrossRefGoogle Scholar
  59. 59.
    Petrov, E.P.: Explicit Finite Element Models of Friction Dampers in Forced Response Analysis of Bladed Disks. Journal of Engineering for Gas Turbines and Power 130, 022502-1 (2008)Google Scholar
  60. 60.
    Firrone, C.M., Zucca, S.: Underplatform dampers for turbine blades: The effect of damper static balance on the blade dynamics. Journal Mechanics Research Communications 36, 515–522 (2009)CrossRefGoogle Scholar
  61. 61.
    Lee, J., Berger, E., Kim, J.H.: Feasibility study of a tunable friction damper. Elsevier Journal of Sound and Vibration 283, 707–722 (2005)CrossRefGoogle Scholar
  62. 62.
    Charleux, D., Gibert, C., Thouverez, F., Dupeux, J.: Numerical and Experimental Study of Friction Damping in Blade Attachments of Rotating Bladed Disks. International Journal of Rotating Machinery, 1–13 (2006)Google Scholar
  63. 63.
    Nacivet, S., Pierre, C., Thouverez, F., Jezequel, L.: A dynamic Lagrangian frequency–time method for the vibration of dry-friction-damped systems. Journal of Sound and Vibration 265, 201–219 (2003)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Documaci, E., Thomas, J., Carnegie, W.: Matrix Displacement Analysis of Coupled Bending-Bending Vibrations of Pre-twisted Blading. Journal of Mechanical Engineering Science 9, 4 (1967)Google Scholar
  65. 65.
    Ahmed, S., Anderson, R.G., Zienkiewicz, E.C.: Vibration of Thick, Curved Shells with Particular Reference to Turbine Blades. Journal of Strain Analysis 5, 200–206 (1970)CrossRefGoogle Scholar
  66. 66.
    Rao, J.S., Saldanha, A.: Turbomachine blade damping. Journal of Sound and Vibration 262, 731–738 (2003)CrossRefGoogle Scholar
  67. 67.
    Narasimha, S., Venkata Rao, G., Ramakrishna, S.: Stress and Vibration Analysis of a Gas Turbine Blade with a Cottage Roof Friction Damper Using Finite Element Method. In: Proceedings of the 14th National Conference on Machines and Mechanisms. NIT, Durgapur, India (2009)Google Scholar
  68. 68.
    Paynter, H.M.: Analysis and Design of Engineering Systems. M.I.T. Press, Cambridge (1961)Google Scholar
  69. 69.
    Mukherjee, A., Karmakar, R.: Bond Graph Modelling of Engineering Systems through Bondgraphs. Narosa Publising House, New DelhiGoogle Scholar
  70. 70.
    Mukherjee, A.: SYMBOLS Shakti User’s Manual, High-Tech Consultants. STEP, Indian Institute of Technology, Kharagpur, India (2005)Google Scholar
  71. 71.
    Rastogi, V., Kumar, V.: Bond Graph Modeling of Friction Damper to Investigate Turbine-Blade Vibration in Power Plants. In: Proceedings of 10th National Conference on Industrial Problems on Machines and Mechanisms (IPRoMM 2010). MNIT, Jaipur, Rajasthan (2010)Google Scholar

Copyright information

© Springer India Pvt. Ltd. 2012

Authors and Affiliations

  • Loveleen Kumar Bhagi
    • 1
  • Vikas Rastogi
    • 1
  • Pardeep Gupta
    • 1
  1. 1.Department of Mechanical EngineeringSant Longowal Institute of Engineering and Technology, (Deemed to be University Estd. by Govt. of India)LongowalIndia

Personalised recommendations