Advertisement

Differential Evolution Strategies for Multi-objective Optimization

Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 130)

Abstract

Multi-objective optimization (MOO) using evolutionary algorithms has gained popularity in the recent past due to its ability of producing number of solutions in a single run and handling multiple objectives simultaneously. In this effort, several MOO algorithms are developed. In this manuscript several strategies of multi-objective differential evolution algorithm (namely, MODE-I, MODE-III, elitist MODE and hybrid MODE) are briefly discussed. Three important unconstrained test problems are considered for validating the performance (in terms of Pareto front and convergence & diversity metrics) of strategies of MODE algorithm with other popular algorithms from literature. It is observed that the strategies of MODE algorithm are in general able to produce Pareto front with good convergence to the true Pareto front.

Keywords

Differential Evolution Multi-objective Differential Evolution (MODE) Evolutionary Algorithms (EAs) Pareto front Multi-objective optimization (MOO) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Back, T.: Evolutionary algorithms in theory and practice. Oxford University Press, New York (1996)Google Scholar
  2. 2.
    Miettinen, K.M.: Nonlinear multiobjective optimization. Kluwer Academic Publishers, Boston (1999)MATHGoogle Scholar
  3. 3.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley and Sons Limited, New York (2001)MATHGoogle Scholar
  4. 4.
    Onwubolu, G.C., Babu, B.V.: New optimization techniques in engineering. Springer, Heidelberg (2004)MATHGoogle Scholar
  5. 5.
    Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, Hiedelberg (2003)MATHGoogle Scholar
  6. 6.
    Coello, C.A.C., Lamont, G.B.: Applications of multi-objective evolutionary algorithm: Advances in natural computation, vol. 1. World Scientific Publishing Co. Pte. Ltd., Singapore (2004)MATHGoogle Scholar
  7. 7.
    Tan, K.C., Khor, E.F., Lee, T.H.: Multi-objective evolutionary algorithms and applications. Springer, London (2005)Google Scholar
  8. 8.
    Biswas, A., Chakraborti, N., Sen, P.K.: A genetic algorithms based multi-objective optimization approach applied to a hydrometallurgical circuit for ocean nodules. Min. Processing. Ext. Metal. Rev. 30, 163–189 (2009)CrossRefGoogle Scholar
  9. 9.
    Biswas, A., Chakraborti, N., Sen, P.K.: Multiobjective optimization of manganese recovery from sea nodules using genetic algorithms. Mat. Manuf. Processes 24, 22–30 (2009)CrossRefGoogle Scholar
  10. 10.
    Price, K.V., Storn, R.: Differential evolution - a simple evolution strategy for fast optimization. Dr. Dobb’s J. 22, 18–22 (1997)Google Scholar
  11. 11.
    Babu, B.V.: Process plant simulation. Oxford Press, New York (2004)Google Scholar
  12. 12.
    Babu, B.V., Angira, R.: Optimal design of an auto-thermal ammonia synthesis reactor. Compu. Che. Engng. 29, 1041–1045 (2005)CrossRefGoogle Scholar
  13. 13.
    Babu, B.V., Angira, R.: Modified differential evolution (MDE) for optimization of non-linear chemical processes. Compu. Che. Engng. 30, 989–1002 (2006)CrossRefGoogle Scholar
  14. 14.
    Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addission-Wesley, Reading (1989)MATHGoogle Scholar
  15. 15.
    Babu, B.V., Chakole, P.G., Mubeen, J.H.S.: Multi-objective differential evolution (MODE) for optimization of adiabatic styrene reactor. Che. Engng. Sci. 60, 4822–4837 (2005)CrossRefGoogle Scholar
  16. 16.
    Gujarathi, A.M., Babu, B.V.: Multi-objective Optimization of Industrial Styrene Reactor: Adiabatic and Pseudo-isothermal Operation. Che. Engng. Sci. 65, 2009–2026 (2010)CrossRefGoogle Scholar
  17. 17.
    Angira, R.: Evolutionary computation for optimization of selected nonlinear chemical processes. Ph. D. Thesis, Birla Institute of Technology and Science (BITS), Pilani, India (2005)Google Scholar
  18. 18.
    Gujarathi, A.M., Babu, B.V.: Optimization of Adiabatic Styrene Reactor: A Hybrid Multi-Objective Differential Evolution (H–MODE) Approach. Ind. Engng. Che. Res. 48, 11115–11132 (2009)CrossRefGoogle Scholar
  19. 19.
    Babu, B.V., Gujarathi, A.M.: Elitist-Multi-Objective Differential Evolution (E-MODE) Algorithm for Multi-Objective Optimization. In: Proceedings of 3rd Indian International Conference on Artificial Intelligence (IICAI 2007), Pune, pp. 441–456 (2007)Google Scholar
  20. 20.
    Gujarathi, A.M., Babu, B.V.: Improved Multi-Objective Differential Evolution (MODE) Approach for Purified Terephthalic Acid (PTA) Oxidation Process. Mat. Manuf. Processes 24, 303–319 (2009)CrossRefGoogle Scholar
  21. 21.
    Gujarathi, A.M., Babu, B.V.: Elitist Multi-Objective Differential Evolution Algorithm for Multi-Objective Optimization of Industrial Styrene Reactor. App. Comput. Intel. Soft. Comp. (accepted) (in Press)Google Scholar
  22. 22.
    Nelder, J.M., Mead, R.: A Simplex method for function minimization. The Comput. J. 7, 308–313 (1965)MATHGoogle Scholar
  23. 23.
    Gujarathi, A.M., Babu, B.V.: Hybrid Multi-objective Differential Evolution (H-MODE) for optimization of Polyethylene Terephthalate (PET) reactor. Int. J. Bio-insp. Compu. 2, 213–221 (2010)CrossRefGoogle Scholar
  24. 24.
    Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic algorithms. Ph. D. Thesis, Vanderbilt University, Nashville, T.N (1985)Google Scholar
  25. 25.
    Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multi-objective optimization. Evo. Comput. J. 3, 1–16 (1995)CrossRefGoogle Scholar
  26. 26.
    Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1990)CrossRefGoogle Scholar

Copyright information

© Springer India Pvt. Ltd. 2012

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentBirla Institute of Technology and Science (BITS)PilaniIndia
  2. 2.Institute of Engineering and TechnologyJKLUJaipurIndia

Personalised recommendations