Advertisement

Quantum Concepts in Neural Computation

  • Sitakanta Nayak
  • Shaktikanta Nayak
  • J. P. Singh
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 130)

Abstract

Quantum computation uses quantum mechanical concepts to perform computational tasks and in some cases its results are exponentially faster than their classical counterparts. The main practical reason to investigate the quantum concepts on artificial neural computation is motivated by the success of some quantum algorithms like Grover’s search algorithm and Shore’s factoring algorithm. The neural networks can be advanced more by the application of quantum computing on artificial neural network (ANN). Since quantum physics is the natural generalization of classical physics, the classical ANN can be generalized to its quantum domain by the combination of classical neural computation with quantum computation. In this paper we have tried to introduce basic quantum mechanical concepts in artificial neural computation.

Keywords

Quantum Computation Artificial Neural Network Quantum Neuron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kak, S.C.: On Quantum Neural Computing. Information Science 83, 143–160 (1995)CrossRefGoogle Scholar
  2. 2.
    Menneer, T., Narayanan, A.: Quantum-inspired Neural Networks. Tech. Rep. R329, Univ. of Exeter (1995)Google Scholar
  3. 3.
    Benioff, P.A.: Quantum Mechanical Hamiltonian Model of Turing Machine. J. Stat. Phy., R. 29(3), 515–546 (1982)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Feynman, R.P.: Simulating physics with computers. Inr. J. of Theo. Physics 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Pmc. of Roy. Soc. of London Ser. A 400, 97–117 (1985)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Minsky, M., Papert, P.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1969)MATHGoogle Scholar
  7. 7.
    Ezhov, A., Ventura, D.: Quantum Neural Networks. In: Future Directions for lnielligent Systems and Information Sciences, pp. 213–234. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Altaisky, M.V.: Quantum neural network, ArXiv: quant-ph/O l07012 (2001)Google Scholar
  9. 9.
    Landman, B.S., Russo, R.L.: IEEE Transactions on Computers  20, 1469–1479 (1971)Google Scholar
  10. 10.
    Ezhov, A.A., Shumsky, S.A.: Neurocomputing and its application in economics and business. Moscow Engineering Physics Institutes, Moscow (1999)Google Scholar
  11. 11.
    Nakahara, M., Tetsuo, O.: Quantum Computing, From Linear Algebra to Physical Realizations. CRC Pres, Boca Raton (2008)MATHCrossRefGoogle Scholar
  12. 12.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and Quantum Information Chuang. Cambridge University press (2002)Google Scholar
  13. 13.
    Rieffel, E., Polak, W.: An Introduction to Quantum Computing for Non- Physicists. ACM Computing Surveys (CSUR) 32(3), 300–335 (2000)CrossRefGoogle Scholar
  14. 14.
    Ezhov, A.A., Berman, G.P.: Introduction to Quantum Neural Technologies. Rinton Press, New Jersey (2003)Google Scholar
  15. 15.
    Menneer, T., Narayanan, A.: Quantum artificial neural network architectures and components. Information Sciences (128), 231–255 (2000)Google Scholar

Copyright information

© Springer India Pvt. Ltd. 2012

Authors and Affiliations

  • Sitakanta Nayak
    • 1
  • Shaktikanta Nayak
    • 1
  • J. P. Singh
    • 1
  1. 1.Department of Management StudiesIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations