Advertisement

Study on Ductility of Ti Aluminides Using Mamdani Fuzzy Inference System

  • R. K. Gupta
  • Bhanu Pant
  • P. P. Sinha
  • Rama Mehta
  • Vijaya Agarwala
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 130)

Abstract

Application of Ti aluminide is limited due to its poor ductility at room temperature. Over the last two decades several studies have been conducted and large amount of data have been generated. These data have been utilized in the present work to obtain optimized set of parameters through Mamdani fuzzy inference system. Ductility database were prepared and three parameters viz. alloy type, grain size and heat treatment cycle were selected for modeling. Additionally, ductility data were generated from literature for training and validation of models on the basis of linearity and considering the primary effect of these three parameters. All the data have been used to frame the fuzzy rules with its membership values. Performance of the models was evaluated, which shows model has better agreement with the data generated from observed data. Possibility of improving ductility more than 5% is observed for multicomponent alloy with grain size of 10-50μm using a multistep heat treatment cycle.

Keywords

Ti aluminide ductility Mamdani Fuzzy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lipsitt, H.A.: High Temperature Ordered Intermetallic Alloys. In: Koch, C.C., Liu, C.T., Stolloff, N.S. (eds.) MRS, vol. 39, p. 351 (1985)Google Scholar
  2. 2.
    Taub, A.I., Fleischer, R.L.: Science 243, 616 (1989)CrossRefGoogle Scholar
  3. 3.
    Huang, S.C., Cheshut, J.C.: Gamma Ti Al and its alloys-Intermetallic compounds. In: Westbrook, J.H., Fleischer, R.L. (eds.), vol. 2, p. 73. John Wiley & Sons Ltd. (1994)Google Scholar
  4. 4.
    Kattener, U.R., Lin, J.C., Chang, Y.A.: Metall. Trans. 23A, 2081 (1992)Google Scholar
  5. 5.
    Kim, Y.W., Froes, F.H.: High temperature aluminides and Intermetallics. In: Whang, S.H., Liu, C.T., Pope, D.P., Stiegler, J.O. (eds.), p. 485. The Minerals, Metals & Materials Society (1990)Google Scholar
  6. 6.
    Kim, Y.W., Froes, F.H.: High temperature aluminides and Intermetallics. In: Whang, S.H., Liu, C.T., Pope, D.P., Stiegler, J.O. (eds.), p. 465. The Minerals, Metals & Materials Society (1990)Google Scholar
  7. 7.
    Huang, S.C., Hall, E.L., Shih, D.S.: ISIJ Int. 10(31), 1100 (1991)CrossRefGoogle Scholar
  8. 8.
    Kim, Y.W.: Acta Metall. Mater. 40(6), 1121 (1992)CrossRefGoogle Scholar
  9. 9.
    Huang, S.C., Hall, E.L.: Acta Metall. Mater. 39(6), 1053 (1991)CrossRefGoogle Scholar
  10. 10.
    Wang, J.N., Xie, K.: Intermetallics 8, 545 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Seetharaman, V., Semiatin, S.L.: Mater. Sci. & Engg. A 299A, 195 (2001)CrossRefGoogle Scholar
  12. 12.
    Beschliesser, M., Chatterjee, A., Lorich, A., Knabl, W., Kestler, H., Dehm, G., Clemens, H.: Mater. Sci. and Engg. A 329-331, 124 (2002)CrossRefGoogle Scholar
  13. 13.
    Imayev, V., Imayev, R., Kuznetsov, A.: Scripta Mater. vol. 49, p. 1047 (2003)Google Scholar
  14. 14.
    Clemens, H., Bartels, A., Bystrzanowski, S., Chladil, H., Leitner, H., Dehm, G., Gerling, R., Schimansky, F.P.: Intermetallics 14, 1380 (2006)CrossRefGoogle Scholar
  15. 15.
    Perez-Bravo, M., Madariaga, I., Estolaza, K., Tello, M.: Scripta Mater. 53, 1141 (2005)CrossRefGoogle Scholar
  16. 16.
    Wang, J.N., Yang, J., Wang, Y.: Scripta Mater. 52, 329 (2005)CrossRefGoogle Scholar
  17. 17.
    Mamdani, E.H., Assilian, S.: Int. J. Man Machine Stud. 7(1), 1 (1975)MATHCrossRefGoogle Scholar
  18. 18.
    Gupta, R.K., Rama, M., Vijaya, A., Bhanu, P., Sinha, P.P.: Trans. IIM 63(6), 833 (2010)Google Scholar
  19. 19.
    Kosko, B.: Neural Networks and Fuzzy Systems. Prentice Hall of India Pvt. Ltd., India (1996)Google Scholar
  20. 20.
    Ross, T.J.: Fuzzy logic with Engineering Applications. Electrical Engineering series. Mc Graw Hill International Editions (1997)Google Scholar
  21. 21.
    Civanlar, M.R., Trussel, H.J.: Constructing membership functions using statistical data. Fuzzy Sets and Systems 18, 1 (1986)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Devi, B.B., Sharma, V.V.S.: Information Sci., vol. 35 (1), p. 43 (1985)Google Scholar
  23. 23.
    MATLAB Fuzzy logic toolbox. The MATH WORKS, Inc. (1995)Google Scholar
  24. 24.
    Bardossy, A., Duckstein, L.: Fuzzy rule based modeling with applications to geophysical, biological and engineering systems. CRC press, Boca Raton (1995)MATHGoogle Scholar
  25. 25.
    Takagi, T., Sugeno, M.: IEEE Trans. Syst. Man. Cyber. 15, 116 (1985)MATHGoogle Scholar
  26. 26.
    Dombi, J.: Fuzzy Sets and Systems 35, 1 (1990)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Chiu, S.L.: J. Intelligent Fuzzy System 2, 267 (1994)MathSciNetGoogle Scholar
  28. 28.
    Nash, J.E., Sutcliffe, J.V.: Hydrology J. 10, 282 (1970)CrossRefGoogle Scholar
  29. 29.
    Huang, S.C.: Metall. Trans. 23A, 375 (1992)Google Scholar
  30. 30.
    Salishchev, G.A., Imayev, R.M., Senkov, O.N., Froes, F.H.: J. of Metals 46 (2000)Google Scholar
  31. 31.
    Imayev, R., Imayev, V., Salishchev, G.: Scripta Metall. 29, 719 (1993)CrossRefGoogle Scholar
  32. 32.
    Imayev, R., Imayev, V., Salishchev, G.: Scripta Metall. 29, 713 (1993)CrossRefGoogle Scholar
  33. 33.
    Hu, D.: Intermetallics 10, 851 (2002)CrossRefGoogle Scholar
  34. 34.
    Tang, J., Huang, B., Liu, W., He, Y., Zhou, K., Wu, A., Peng, K., Qin, W., Du, Y.: Materials Research Bulletin 38, 2019 (2003)CrossRefGoogle Scholar

Copyright information

© Springer India Pvt. Ltd. 2012

Authors and Affiliations

  • R. K. Gupta
    • 1
  • Bhanu Pant
    • 1
  • P. P. Sinha
    • 1
  • Rama Mehta
    • 2
  • Vijaya Agarwala
    • 3
  1. 1.Materials and Mechanical EntityVSSCTrivandrumIndia
  2. 2.National Institute of HydrologyRoorkeeIndia
  3. 3.Dept. of Met. & Mat. Engg.Indian IITRoorkeeIndia

Personalised recommendations