Skip to main content

Development of LiPb–SiC High Temperature Blanket

  • Conference paper

Part of the Green Energy and Technology book series (GREEN)

Abstract

This paper reports the development LiPb–SiC blanket concept aimed at the high performance liquid blanket to be feasible in the near future.

It is based on the current LiPb liquid tritium breeder concept with reduced activation ferritic/martensitic steel (RAFM), but with cooling panels made of SiC/SiC material that thermally and electrically insulate RAFM from LiPb. Extraction of thermal energy over 900ºC is expected to be possible, that can be used for high efficiency electricity generation or thermochemical hydrogen production.

In the activities for the research of this concept, development of the SiC composite cooling panel, permeation behavior of hydrogen isotopes through SiC materials, LiPb–hydrogen chemistry, magneto-hydro-dynamic (MHD) pressure drop in the insulating SiC flow channels, neutronics analysis, etc., are studied. In addition, the experiments are carried out with LiPb at the temperature over 900ºC.

Keywords

  • LiPb–SiC blanket
  • Tritium breeding rate (TBR)
  • Magneto-hydro-dynamic (MHD) pressure drop

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-4-431-99779-5_17
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-4-431-99779-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Maisonnier D, Cook I, Pierre S, Lorenzo B, Luigi DP, Luciano G et al. (2006) DEMO and fusion power plant conceptual studies in Europe. Fusion Eng Design 81:1123–1130

    Google Scholar 

  2. Norajitra P, Buhler L, Fischer U, Malang S, Reimann G, Schnauder H (2002) The EU advanced dual coolant blanket concept. Fusion Eng Design 61–62:449–453

    CrossRef  Google Scholar 

  3. Sze DK, Tillack M, El-Guebaly L (2000) Blanket system selection for ARIES ST. Fusion Eng Design 48:371–378

    CrossRef  Google Scholar 

  4. Tillack MS, Malang S (1997) High performance PbLi blanket. In: Proceedings of the 17th IEEE/NPSS Symposium on Fusion Energy, San Diego, CA, pp 1000–1004

    Google Scholar 

  5. Malang S, Bojarski E, Buffier L, Deckers H, Fischer U, Norajitra P et al (1992) Dual-coolant liquid metal breeding blanket. Fusion Technol 17:1424–1428

    Google Scholar 

  6. Engle WW Jr (1967) A user’s manual for ANISN, “One dimensional discrete ordinates transport code with anisotropic scattering”. Oak Ridge Report K-1693

    Google Scholar 

  7. Hasegawa T, Yamamoto Y, Konishi S (2007) Conceptual design of advanced blanket using liquid LiPb. In: Proceedings of 22nd IEEE/NPSS Symposium on Fusion Engineering (SOFE07), 17–21 June 2007, Albuquerque, NM

    Google Scholar 

  8. Li Puma A, Berton JL, Branas B, Buhler L, Doncel J, Fischer U, Farabolini W, Giancarli L, Maisonnier D, Pereslavtsev P, Raboin S, Salavy J-F, Sardain P, Szczepanski J, Ward D (2006) Breeding blanket design and systems integration for a helium-cooled lithium–lead fusion power plant. Fusion Eng Design 81:469–476

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dohyoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Kim, D., Noborio, K., Hasegawa, T., Yamamoto, Y., Konishi, S. (2010). Development of LiPb–SiC High Temperature Blanket. In: Yao, T. (eds) Zero-Carbon Energy Kyoto 2009. Green Energy and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99779-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-99779-5_17

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-99778-8

  • Online ISBN: 978-4-431-99779-5

  • eBook Packages: EngineeringEngineering (R0)