Skip to main content

Early Postnatal Stress and the Serotonergic System in the Brain

  • Conference paper
Molecular Imaging for Integrated Medical Therapy and Drug Development

Abstract

Recent studies have focused on the serotonergic mechanism, mediated via serotonin (5-hydroxytryptamine; 5-HT) receptors, underlying the regulation of emotional stress during the developmental period. The present study was undertaken to elucidate whether early postnatal stress affects rat brain development and influences serotonergic function in the midbrain raphe nuclei in the adult, focusing on the response to unconditioned fear stress assessed with the elevated plus maze test. Rats that received aversive foot shock (FS) stimuli in the third week of the postnatal period (3wFS), but not those that received the aversive FS stimuli in the second week (2wFS), spent an increased percentage of time on the open arms of the elevated plus maze in the postadolescent period (age. 10–12 weeks). The number of 5-HT neurons in the raphe nuclei was significantly decreased by FS administered when animals were 3 weeks old. Fluvoxamine treatment (10 mg/kg, p.o.) given for 14 days immediately after the aversive stress normalized the behavioral patterns in the elevated plus maze test. These findings suggest that exposure to aversive stress during the early postnatal period may affect serotonergic development, and thereby may affect emotional responses to fear stimuli in the post-adolescent period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Modell S, Lauer CJ, Schreiber W et al (1998) Hormonal response pattern in the combined DEX-CRH test is stable over time in subjects at high familial risk for affective disorders. Neuropsychopharmacology 18: 253–262

    Article  CAS  PubMed  Google Scholar 

  2. Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49: 1023–1039

    Article  CAS  PubMed  Google Scholar 

  3. Yoshioka M, Matsumoto M, Togashi H et al (1995) Effects of conditioned fear stress on 5-HT release in the rat prefrontal cortex. Pharmacol Biochem Behav 51: 515–519

    Article  CAS  PubMed  Google Scholar 

  4. Roche M, Commons KG, Peoples A et al (2003) Circuitry underlying regulation of the serotonergic system by swim stress. J Neurosci 23: 970–977

    CAS  PubMed  Google Scholar 

  5. Maes M, Meltzer HY (1995) The serotonin hypothesis of major depression. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Lippincott, Philadelphia, pp 933–944

    Google Scholar 

  6. Sandford JJ, Argyropoulos SV, Nutt DJ (2000) The psychobiology of anxiolytic drugs: part 1. Basic neurobiology. Pharmacol Ther 88: 197–212

    Article  CAS  PubMed  Google Scholar 

  7. Aitken AR, Tork I (1988) Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of the fetal rat brain. J Comp Neurol 274: 32–47

    Article  CAS  PubMed  Google Scholar 

  8. Lauder JM (1990) Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal. Ann N Y Acad Sci 600: 297–313

    Article  CAS  PubMed  Google Scholar 

  9. Whitaker-Azmitia PM, Lauder JM, Shemmer A et al (1987) Postnatal changes in serotonin receptors following prenatal alterations in serotonin levels: further evidence for functional fetal serotonin receptors. Brain Res 430: 285–289

    CAS  PubMed  Google Scholar 

  10. Zhou FC, Sari Y, Zhang JK (2000) Expression of serotonin transporter protein in developing rat brain. Dev Brain Res 119: 33–45

    Article  CAS  Google Scholar 

  11. Mazer C, Muneyyirci J, Taheny K et al (1997) Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat. A model of neuro-developmental disorders with cognitive deficits. Brain Res 760: 68–73

    Article  CAS  PubMed  Google Scholar 

  12. Faber KM, Haring JH (1999) Synaptogenesis in the postnatal rat fascia dentata is influenced by 5-HT1a receptor activation. Dev Brain Res 114: 245–252

    Article  CAS  Google Scholar 

  13. Kondoh M, Shiga T, Okado N (2004) Regulation of dendrite formation of Purkinje cells by serotonin through serotonin1A and serotonin2A receptors in culture. Neurosci Res 48: 101–109

    Article  CAS  PubMed  Google Scholar 

  14. Lauder JM, Wallace JA, Krebs H (1981) Roles for serotonin in neuroembryogenesis. Adv Exp Med Biol 133: 477–506

    CAS  PubMed  Google Scholar 

  15. Lauder JM, Wallace JA, Wilkie MB et al (1983) Roles for serotonin in neurogenesis. Monogr Neural Sci 9: 3–10

    CAS  PubMed  Google Scholar 

  16. Okado N, Cheng L, Tanatsugu Y et al (1993) Synaptic loss following removal of serotoninergic fibers in newly hatched and adult chickens. J Neurobiol 24: 687–698

    Article  CAS  PubMed  Google Scholar 

  17. Cases O, Vitalis T, Seif I et al (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16: 297–307

    Article  CAS  PubMed  Google Scholar 

  18. Janusonis S, Gluncic V, Rakic P (2004) Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J Neurosci 24: 1652–1659

    Article  CAS  PubMed  Google Scholar 

  19. Vazquez DM, Lopez JF, Van Hoers H et al (2000) Maternal deprivation regulates serotonin 1A and 2A receptors in the infant rat. Brain Res 855: 76–82

    Article  CAS  PubMed  Google Scholar 

  20. Vazquez DM, Eskandari R, Zimmer CA et al (2002) Brain 5-HT receptor system in the stressed infant rat: implications for vulnerability to substance abuse. Psychoneuroendocrinology 27: 245–272

    Article  CAS  PubMed  Google Scholar 

  21. Van den Hove DL, Lauder JM, Scheepens A et al (2006) Prenatal stress in the rat alters 5-HT1A receptor binding in the ventral hippocampus. Brain Res 1090: 29–34

    Article  PubMed  Google Scholar 

  22. Gartside SE, Johnson DA, Leitch MM et al (2003) Early life adversity programs changes in central 5-HT neuronal function in adulthood. Eur J Neurosci 17: 2401–2408

    Article  PubMed  Google Scholar 

  23. Pellow S, Chopin P, File SE et al (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14: 149–167

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto M, Higuchi K, Togashi H et al (2005) Early postnatal stress alters the 5-HTergic modulation to emotional stress at postadolescent periods of rats. Hippocampus 15: 775–781

    Article  CAS  PubMed  Google Scholar 

  25. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, New York

    Google Scholar 

  26. Andrews N, Hogg S, Gonzalez LE et al ( 1994) 5-HT1A receptors in the median raphe nucleus and dorsal hippocampus may mediate anxiolytic and anxiogenic behaviours respectively. Eur J Pharmacol 264: 259–264

    Article  CAS  PubMed  Google Scholar 

  27. Cervo L, Mocaër E, Bertaglia A et al (2000) Roles of 5-HT1A receptors in the dorsal raphe and dorsal hippocampus in anxiety assessed by the behavioral effects of 8-OH-DPAT and S 15535 in a modified Geller-Seifter conflict model. Neuropharmacology 39: 1037–1043

    Article  CAS  PubMed  Google Scholar 

  28. Chugani DC, Muzik O, Rothermel R et al (1997) Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol 42: 666–669

    Article  CAS  PubMed  Google Scholar 

  29. Lauder JM, Liu J, Grayson DR (2000) In utero exposure to serotonergic drugs alters neonatal expression of 5-HT1A receptor transcripts: a quantitative RT-PCR study. Int J Dev Neurosci 18: 171–176

    Article  CAS  PubMed  Google Scholar 

  30. Béïque JC, Campbell B, Perring P et al (2004) Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J Neurosci 24: 4807–4817

    Article  PubMed  Google Scholar 

  31. Young AH, Dow RC, Goodwin GM et al (1993) The effects of adrenalectomy and ovariectomy on the behavioral and hypothermic responses of rats to 8-hydroxy-2 (di-n-propylamino) tetralin (8-OH-DPAT). Neuropharmacology 32: 653–657

    Article  CAS  PubMed  Google Scholar 

  32. Meijer OC, de Kloet ER (1998) Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity. Crit Rev Neurobiol 12: 1–20

    CAS  PubMed  Google Scholar 

  33. Watanabe Y, Sakai RR, McEwen BS (1993) Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin. Brain Res 615: 87–94

    Article  CAS  PubMed  Google Scholar 

  34. McKittrick CR, Blanchard DC, Blanchard RJ et al (1995) Serotonin receptor binding in a colony model of chronic social stress. Biol Psychiatry 37: 383–393

    Article  CAS  PubMed  Google Scholar 

  35. Lopez JF, Chalmers DT, Little KY et al (1998) A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry 43: 547–573

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Konno, K., Yoshioka, M. (2010). Early Postnatal Stress and the Serotonergic System in the Brain. In: Tamaki, N., Kuge, Y. (eds) Molecular Imaging for Integrated Medical Therapy and Drug Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-98074-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-98074-2_21

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-98073-5

  • Online ISBN: 978-4-431-98074-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics