Skip to main content

Part of the book series: Allergy Frontiers ((ALLERGY,volume 2))

  • 850 Accesses

Asthma is characterised by intermittent airflow obstruction with excessive bronchoconstriction and bronchial hyperresponsiveness (BHR). Since the airway smooth muscle (ASM) is the main contractile cell of the airways, it is clear that the ASM plays a major role in the genesis of these abnormalities. Airflow obstruction does not usually occur in non-asthmatics, thus one would presume that the ASM is abnormally contractile in asthma and there is now evidence that the abnormality of the contractile apparatus can be demonstrated in the asthmatic ASM itself. Therapies to relieve airflow obstruction promptly such as the inhalation of 2-adrenergic agonists are directly aimed at the ASM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mead J (2007) Point: Airway smooth muscle is useful. J Appl Physiol 102: 1708–1709

    Article  PubMed  Google Scholar 

  2. Fredberg JJ (2007) Counterpoint: Airway smooth muscle is not useful. J Appl Physiol 102: 1709–1710

    Article  PubMed  Google Scholar 

  3. Mitzner W (2004) Airway Smooth Muscle: The Appendix of the Lung. Am J Respir Crit Care Med 169: 787–790

    Article  PubMed  Google Scholar 

  4. Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, Leff AR (2004) Reduction in airway hyperresponsive-ness to methacholine by the application of RF energy in dogs. J Appl Physiol 97: 1946–1953

    Article  PubMed  CAS  Google Scholar 

  5. Cox G, Miller JD, McWilliams A, FitzGerald JM, Lam S (2006) Bronchial thermoplasty for asthma. Am J Respir Crit Care Med 173: 965–969

    Article  PubMed  Google Scholar 

  6. Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, Olivenstein R, Pavord ID, McCormack D, Chaudhuri R, Miller JD, Laviolette M, the AIRTSG (2007) Asthma control during the year after bronchial thermoplasty. N Engl J Med 356: 1327–1337

    Article  PubMed  CAS  Google Scholar 

  7. Woolcock AJ (1984) The shape of the dose-response curve to histamine in asthmatic and normal subjects. Am Rev Respir Dis 130: 71–75

    PubMed  CAS  Google Scholar 

  8. McParland BE, Tait RR, Pare PD, Seow CY (2005) The role of airway smooth muscle during an attack of asthma simulated in vitro. Am J Respir Cell Mol Biol 33: 500–504

    Article  PubMed  CAS  Google Scholar 

  9. An SS, Bai TR, Bates JHT, Black JL, Brown RH, Brusasco V, Chitano P, Deng L, Dowell M, Eidelman DH, Fabry B, Fairbank NJ, Ford LE, Fredberg JJ, Gerthoffer WT, Gilbert SH, Gosens R, Gunst SJ, Halayko AJ, Ingram RH, Irvin CG, James AL, Janssen LJ, King GG, Knight DA, Lauzon AM, Lakser OJ, Ludwig MS, Lutchen KR, Maksym GN, Martin JG, Mauad T, McParland BE, Mijailovich SM, Mitchell HW, Mitchell RW, Mitzner W, Murphy TM, Pare PD, Pellegrino R, Sanderson MJ, Schellenberg RR, Seow C Y, Silveira PSP, Smith PG, Solway J, Stephens NL, Sterk PJ, Stewart AG, Tang DD, Tepper RS, Tran T, Wang L (2007) Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 29: 834–860

    Article  PubMed  CAS  Google Scholar 

  10. Ebina M, Takahashi T, Chiba T, Motomiya M (1993) Cellular hypertrophy and hyperplasia of airway smooth muscle underlying bronchial asthma. Am Rev Respir Dis 148: 720–726

    PubMed  CAS  Google Scholar 

  11. Benayoun L, Druilhe A, Dombret M-C, Aubier M, Pretolani M (2003) Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 167: 1360–1368

    Article  PubMed  Google Scholar 

  12. de Jongste JC MH, Bonta IL, Kerrebijn KF (1987) In vitro responses of airways from an asthmatic patient. Am Rev Respir Dis 71: 23–29

    Google Scholar 

  13. Bai TR (1990) Abnormalities in airway smooth muscle in fatal asthma. Am Rev Respir Dis 141: 552–557

    PubMed  CAS  Google Scholar 

  14. Cerrina J, Le Roy Ladurie, Labat C, Raffestin B, Bayol A, Brink C (1986) Comparision of human bronchial muscle responses to histamine in vivo with histamine and isoproterenol agonists in vitro. Am Rev Respir Dis 134: 57–61

    PubMed  CAS  Google Scholar 

  15. Matsumoto H, Moir LM, Oliver BG, Burgess JK, Roth M, Black JL, McParland BE (2007) Comparison of gel contraction mediated by asthmatic and non-asthmatic airway smooth muscle cells. Thorax 62: 848–854

    Article  PubMed  Google Scholar 

  16. Ma X, Cheng Z, Kong H, Wang Y, Unruh H, Stephens NL, Laviolette M (2002) Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am J Physiol Lung Cell Mol Physiol 283: L1181–1189

    PubMed  CAS  Google Scholar 

  17. Kamm KE, Stull JT (1985) The function of myosin and myosin light chain kinase phosphor-ylation in smooth muscle. Annu Rev Pharmacol Toxicol 25: 593–620

    Article  PubMed  CAS  Google Scholar 

  18. James AL, Paré PD, Hogg JC (1989) The mechanics of airway narrowing in asthma. Am Rev Respir Dis 139: 242–246

    PubMed  CAS  Google Scholar 

  19. Brown RH, Zerhouni EA, Mitzner W (1995) Airway edema potentiates airway reactivity. J Appl Physiol 79: 1242–1248

    PubMed  CAS  Google Scholar 

  20. Skloot G, Togias A (2003) Bronchodilation and bronchoprotection by deep inspiration and their relationship to bronchial hyperresponsiveness. Clin Rev Allergy Immunol 24: 55–72

    Article  PubMed  Google Scholar 

  21. Slats AM, Sont JK, van Klink RHCJ, Bel EHD, Sterk PJ (2006) Improvement in bronchodila-tion following deep inspiration after a course of high-dose oral prednisone in asthma. Chest 130: 58–65

    Article  PubMed  CAS  Google Scholar 

  22. Pepe C, Foley S, Shannon J, Lemiere C, Olivenstein R, Ernst P, Ludwig MS, Martin JG, Hamid Q (2005) Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol 116: 544–549

    Article  PubMed  Google Scholar 

  23. Woodruff PG, Dolganov GM, Ferrando RE, Donnelly S, Hays SR, Solberg OD, Carter R, Wong HH, Cadbury PS, Fahy JV (2004) Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am J Respir Crit Care Med 169: 1001–1006

    Article  PubMed  Google Scholar 

  24. Johnson PRA, Roth M, Tamm M, Hughes M, Ge Q, King G, Burgess JK, Black JL (2001) Airway smooth muscle cell proliferation is increased in asthma. Am J Respir Crit Care Med 164: 474–477

    PubMed  CAS  Google Scholar 

  25. Jeffery P (2001) Inflammation and remodelling in the adult and child with asthma. Pediatr Pulmonol Suppl 21: 3–16

    Article  PubMed  CAS  Google Scholar 

  26. Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, Herszberg B, Lavoie J-P, McVicker CG, Moir LM, Nguyen TTB, Peng Q, Ramos-Barbon D, Stewart AG (2004) Proliferative aspects of airway smooth muscle. J Allergy Clin Immunol 114: S2–S17

    Article  PubMed  CAS  Google Scholar 

  27. Salmon M, Walsh DA, Koto H, Barnes PJ, Chung KF (1999) Repeated allergen exposure of sensitized Brown-Norway rats induces airway cell DNA synthesis and remodelling. Eur Respir J 14: 633–641

    Article  PubMed  CAS  Google Scholar 

  28. Ramos-Barbón D, Presley JF, Hamid QA, Fixman ED, Martin JG (2005) Antigen-specific CD4 + T cells drive airway smooth muscle remodeling in experimental asthma. J Clin Invest 115: 1580–1589

    Article  PubMed  CAS  Google Scholar 

  29. Wang CG, Du T, Xu LJ, Martin JG (1993) Role of leukotriene D4 in allergen-induced increases in airway smooth muscle in the rat. Am Rev Respir Dis 148: 413–417

    PubMed  CAS  Google Scholar 

  30. Tang W, Geba GP, Zheng T, Ray P, Homer RJ, Kuhn C, Flavell RA, Elias JA (1996) Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J Clin Invest 98: 2845–2853

    Article  PubMed  CAS  Google Scholar 

  31. Salmon M, Walsh DA, Huang T-J, Barnes PJ, Leonard TB, Hay DWP, Chung KF (1999) Involvement of cysteinyl leukotrienes in airway smooth muscle cell DNA synthesis after repeated allergen exposure in sensitized Brown Norway rats. Br J Pharmacol 127: 1151–1158

    Article  PubMed  CAS  Google Scholar 

  32. Salmon M, Liu YC, Mak JC, Rousell J, Huang TJ, Hisada T, Nicklin PL, Chung KF (2000) Contribution of upregulated airway endothelin-1 expression to airway smooth muscle and epithelial cell DNA synthesis after repeated allergen exposure of sensitized brown-Norway rats. Am J Respir Cell Mol Biol 23: 618–625

    PubMed  CAS  Google Scholar 

  33. Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Lee SY, McElwain K, McElwain S, Friedman S, Broide DH (2004) Inhibition of airway remodeling in IL-5—deficient mice. J Clin Invest 113: 551–560

    PubMed  CAS  Google Scholar 

  34. Leigh R, Ellis R, Wattie JN, Hirota JA, Matthaei KI, Foster PS, O'Byrne PM, Inman MD (2004) Type 2 Cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. Am J Respir Crit Care Med 169: 860–867

    Article  PubMed  Google Scholar 

  35. Leung SY, Niimi A, Noble A, Oates T, Williams AS, Medicherla S, Protter AA, Chung KF (2006) Effect of transforming growth factor-beta receptor I kinase inhibitor 2,4-disubstituted pteridine (SD-208) in chronic allergic airway inflammation and remodeling. J Pharmacol Exp Ther 319: 586–594

    Article  PubMed  CAS  Google Scholar 

  36. Nath P, Yee Leung S, Williams AS, Noble A, Xie S, McKenzie ANJ, Chung KF (2007) Complete inhibition of allergic airway inflammation and remodelling in quadruple IL-4/5/9/13 mice. Clin Exp Allergy 37: 1427–1435

    PubMed  CAS  Google Scholar 

  37. Roth M, Johnson PRA, Borger P, Bihl MP, Rudiger JJ, King GG, Ge Q, Hostettler K, Burgess JK, Black JL, Tamm M (2004) Dysfunctional Interaction of C/EBPα and the gluco-corticoid receptor in asthmatic bronchial smooth-muscle cells. N Engl J Med 351: 560–574

    Article  PubMed  CAS  Google Scholar 

  38. Roth M, Johnson PRA, Rudiger JJ, King GG, Ge Q, Burgess JK, Anderson G, Tamm M, Black JL (2002) Interaction between glucocorticoids and [beta]2 agonists on bronchial airway smooth muscle cells through synchronised cellular signalling. Lancet 360: 1293–1299

    Article  PubMed  CAS  Google Scholar 

  39. Burgess JK, Johnson PRA, Ge Q, Au WW, Poniris MH, McParland BE, King G, Roth M, Black JL (2003) Expression of connective tissue growth factor in asthmatic airway smooth muscle cells. Am J Respir Crit Care Med 167: 71–77

    Article  PubMed  Google Scholar 

  40. Xie S, Sukkar MB, Issa R, Khorasani NM, Chung KF (2007) Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factor-β. Am J Physiol Lung Cell Mol Physiol 293:L245–253

    Article  PubMed  CAS  Google Scholar 

  41. Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S (2003) Identification of circulating fibro-cytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171: 380–389

    PubMed  CAS  Google Scholar 

  42. Brewster CE, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR (1990) Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 3: 507–511

    PubMed  CAS  Google Scholar 

  43. Gizycki MJ, Adelroth E, Rogers AV, O'Byrne PM, Jeffery PK (1997) Myofibroblast involvement in the allergen-induced late response in mild atopic asthma. Am J Respir Cell Mol Biol 16: 664–673

    PubMed  CAS  Google Scholar 

  44. Hedges JC, Dechert MA, Yamboliev IA, Martin JL, Hickey E, Weber LA, Gerthoffer WT (1999) A role for p38MAPK/HSP27 pathway in smooth muscle cell migration. J Biol Chem 274: 24211–24219

    Article  PubMed  CAS  Google Scholar 

  45. Goncharova EA, Billington CK, Irani C, Vorotnikov AV, Tkachuk VA, Penn RB, Krymskaya VP, Panettieri RA, Jr. (2003) Cyclic AMP-mobilizing agents and glucocorticoids modulate human smooth muscle cell migration. Am J Respir Cell Mol Biol 29: 19–27

    Article  PubMed  CAS  Google Scholar 

  46. Parameswaran K, Radford K, Fanat A, Stephen J, Bonnans C, Levy BD, Janssen LJ, Cox PG (2007) Modulation of human airway smooth muscle migration by lipid mediators and Th-2 cytokines. Am J Respir Cell Mol Biol 37: 240–247

    Article  PubMed  CAS  Google Scholar 

  47. Parameswaran K, Cox G, Radford K, Janssen LJ, Sehmi R, O'Byrne PM (2002) Cysteinyl leukotrienes promote human airway smooth muscle migration. Am J Respir Crit Care Med 166: 738–742

    Article  PubMed  Google Scholar 

  48. Hirakawa M, Karashima Y, Watanabe M, Kimura C, Ito Y, Oike M (2007) Protein kinase A inhibits lysophosphatidic acid-induced migration of airway smooth muscle cells. J Pharmacol Exp Ther 321: 1102–1108

    Article  PubMed  CAS  Google Scholar 

  49. Mukhina S, Stepanova V, Traktouev D, Poliakov A, Beabealashvilly R, Gursky Y, Minashkin M, Shevelev A, Tkachuk V (2000) The chemotactic action of Urokinase on smooth muscle cells is dependent on its Kringle domain. Characterization of interactions and contribution to chemotaxis. J Biol Chem 275: 16450–16458

    Article  PubMed  CAS  Google Scholar 

  50. Goncharova EA, Vorotnikov AV, Gracheva EO, Wang CL, Panettieri RA, Stepanova V V, Tkachuk VA (2002) Activation of p38 MAP-kinase and caldesmon phosphorylation are essential for urokinase-induced human smooth muscle cell migration. Biol Chem 383: 115–126

    Article  PubMed  CAS  Google Scholar 

  51. Carlin SM, Roth M, Black JL (2003) Urokinase potentiates PDGF-induced chemotaxis of human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 284: L1020–1026

    PubMed  CAS  Google Scholar 

  52. Carlin SM, Resink TJ, Tamm M, Roth M (2005) Urokinase signal transduction and its role in cell migration. FASEB J 19: 195–202

    Article  PubMed  CAS  Google Scholar 

  53. Joubert P, Lajoie-Kadoch S, Labonte I, Gounni AS, Maghni K, Wellemans V, Chakir J, Laviolette M, Hamid Q, Lamkhioued B (2005) CCR3 Expression and function in asthmatic airway smooth muscle cells. J Immunol 175: 2702–2708

    PubMed  CAS  Google Scholar 

  54. Kaur D, Saunders R, Berger P, Siddiqui S, Woodman L, Wardlaw A, Bradding P, Brightling CE (2006) Airway smooth muscle and mast cell-derived CC chemokine ligand 19 mediate airway smooth muscle migration in asthma. Am J Respir Crit Care Med 174: 1179–1188

    Article  PubMed  CAS  Google Scholar 

  55. Govindaraju V, Michoud M-C, Al-Chalabi M, Ferraro P, Powell WS, Martin JG (2006) Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. Am J Physiol Cell Physiol 291: C957–965

    Article  PubMed  CAS  Google Scholar 

  56. Chan V, Burgess JK, Ratoff JC, O'Connor BJ, Greenough A, Lee TH, Hirst SJ (2006) Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells. Am J Respir Crit Care Med 174: 379–385

    Article  PubMed  CAS  Google Scholar 

  57. Ghaffar O, Hamid Q, Renzi PM, Allakhverdi Z, Molet S, Hogg JC, Shore SA, Luster AD, Lamkhioued B (1999) Constitutive and cytokine stimulated expression of eotaxin by human airway smooth muscle cells. Am J Respir Crit Care Med 159: 1933–1942

    PubMed  CAS  Google Scholar 

  58. Brightling CE, Ammit AJ, Kaur D, Black JL, Wardlaw AJ, Hughes JM, Bradding P (2005) The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am J Respir Crit Care Med 171: 1103–1108

    Article  PubMed  Google Scholar 

  59. El-Shazly A, Berger P, Girodet P-O, Ousova O, Fayon M, Vernejoux J-M, Marthan R, Tunon-de-Lara JM (2006) Fraktalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma. J Immunol 176: 1860–1868

    PubMed  CAS  Google Scholar 

  60. Berger P, Girodet P-O, Begueret H, Ousova O, Perng D-W, Marthan R, Walls AF, Tunon de Lara JM (2003) Tryptase-stimulated human airway smooth muscle cells induce cytokine synthesis and mast cell chemotaxis. FASEB Journal 17: 2139–2141

    PubMed  CAS  Google Scholar 

  61. Berkman N, Robichaud A, Krishnan VL, Roesems G, Robbins R (1996) Expression of RANTES in human airway epithelial cells: effect of corticosteroids and interleukin-4, −10 and −13. Immunol 87: 599–603

    Article  CAS  Google Scholar 

  62. John M, Hirst SJ, Jose PJ, Robichaud A, Berkman N, Witt C, Twort CHC, Barnes PJ, Chung KF (1997) Human airway smooth muscle cells express and release RANTES in response to T helper 1 cytokines. J Immunol 158: 1841–1847

    PubMed  CAS  Google Scholar 

  63. John M, Au B, Jose PJ, Lim S, Saunders M, Barnes PJ, Mitchell JA, Belvisi MG, Chung KF (1998) Expression and release of interleukin-8 by human airway smooth muscle cells: inhibition by Th2 cytokines and corticosteroids. Am J Respir Cell Mol Biol 18: 84–90

    PubMed  CAS  Google Scholar 

  64. Watson ML, Grix SP, Jordan NJ, Place GA, Dodd S, Leithead J, Poll CT, Yoshimura T, Westwick J (1998) Interleukin-8 and monocyte chemoattractant protein 1 production by cultured human airway smooth muscle cells. Cytokine 10: 346–352

    Article  PubMed  CAS  Google Scholar 

  65. Saunders MA, Mitchell JA, Seldon PM, Yacoub MH, Barnes PJ, Giembycz MA, Belvisi MG (1997) Release of granulocyte-macrophage colony stimulating factor by human cultured airway smooth muscle cells: suppression by dexamethasone. Br J Pharmacol 120: 545–546

    Article  PubMed  CAS  Google Scholar 

  66. Chung KF, Patel HJ, Fadlon EJ, Rousell J, Haddad E, Jose P, Mitchell J, Belvisi M (1999) Induction of eotaxin expression and release from human airway smooth muscle cells by IL-1β and TNF-α: effects of IL-10 and corticosteroids. Br J Pharmacol 127: 1145–1150

    Article  PubMed  CAS  Google Scholar 

  67. Pype JL, Dupont LJ, Menten P, Van Coillie E, Opdenakker G, Van Damme J, Chung KF, Demedts MG, Verleden GM (1999) Expression of monocyte chemotactic protein (MCP)-1, MCP-2, and MCP-3 by human airway smooth muscle cells. Modulation by corticosteroids and T-helper 2 cytokines. Am J Respir Cell Mol Biol 21: 528–536

    PubMed  CAS  Google Scholar 

  68. Sukkar MB, Hughes JM, Johnson PRA, Armour CL (2000) GM-CSF production from human airway smooth muscle cells is potentiated by human serum. Med Inflammat 9: 161–168

    Article  CAS  Google Scholar 

  69. McKay S, Hirst SJ, Bertrand-de Haas M, J.C. dJ, Hoogsteden HC, Saxena PR, Sharma HS (2000) Tumour necrosis factor-α enhances mRNA expression and secretion of interleukin-6 in cultured human airway smooth muscle cells. Am J Respir Cell Mol Biol 23: 103–111

    PubMed  CAS  Google Scholar 

  70. Clarke DL, Belvisi MG, Catley MC, Yacoub MH, Newton R, Giembycz MA (2004) Identification in human airways smooth muscle cells of the prostanoid receptor and signalling pathway through which PGE2 inhibits the release of GM-CSF. Br J Pharmacol 141: 1141–1150

    Article  PubMed  CAS  Google Scholar 

  71. Jarai G, Sukkar M, Garrett S, Duroudier N, Westwick J, Adcock I, Fan Chung K (2004) Effects of interleukin-1[beta], interleukin-13 and transforming growth factor-[beta] on gene expression in human airway smooth muscle using gene microarrays. Eur J Pharmacol 497: 255–265

    Article  PubMed  CAS  Google Scholar 

  72. Hardaker EL, Bacon AM, Carlson K, Roshak AK, Foley JJ, Schmidt DB, Buckley PT, Comegys M, Panettieri J, Reynold A., Sarau HM, Belmonte KE (2004) Regulatio6n of TNF-α and IFN-γ induced CXCL10 expression: participation of the airway smooth muscle in the pulmonary inflammatory response in chronic obstructive pulmonary disease. FASEB J 18: 191–193

    PubMed  CAS  Google Scholar 

  73. Clarke DL, Belvisi MG, Smith SJ, Hardaker E, Yacoub MH, Meja KK, Newton R, Slater DM, Giembycz MA (2005) Prostanoid receptor expression by human airway smooth muscle cells and regulation of the secretion of granulocyte colony-stimulating factor. Am J Physiol Lung Cell Mol Physiol 288: L238–250

    Article  PubMed  CAS  Google Scholar 

  74. Fayon M, Rebola M, Berger P, Daburon S, Ousova O, Lavrand F, Moukaila B, Pujol W, Taupin JL, Labbe A, Molimard M, Marthan R (2006) Increased secretion of leukemia inhibitory factor by immature airway smooth muscle cells enhances intracellular signaling and airway contractility. Am J Physiol Lung Cell Mol Physiol 291: L244–251

    Article  PubMed  CAS  Google Scholar 

  75. Catley MC, Sukkar MB, Chung KF, Jaffee B, Liao S-M, Coyle AJ, Haddad E-B, Barnes PJ, Newton R (2006) Validation of the anti-inflammatory properties of small-molecule IκB kinase (IKK)-2 inhibitors by comparison with adenoviral-mediated delivery of dominant-negative IKK1 and IKK2 in human airways smooth muscle. Mol Pharmacol 70: 697–705

    Article  PubMed  CAS  Google Scholar 

  76. Issa R, Xie S, Lee K-Y, Stanbridge RD, Bhavsar P, Sukkar MB, Chung KF (2006) GRO-α regulation in airway smooth muscle by IL-1β and TNF-α role of NF-κB and MAP kinases. Am J Physiol Lung Cell Mol Physiol 291: L66–74

    Article  PubMed  CAS  Google Scholar 

  77. Zhang K, Shan L, Rahman MS, Unruh H, Halayko AJ, Gounni AS (2007) Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 293: L375–382

    Article  PubMed  CAS  Google Scholar 

  78. Sukkar MB, Issa R, Xie S, Oltmanns U, Newton R, Chung KF (2004) Fractalkine/CX3CL1 production by human airway smooth muscle cells: induction by IFN-γ and TNF-α and regulation by TGF-β and corticosteroids. Am J Physiol Lung Cell Mol Physiol 287: L1230–1240

    Article  PubMed  CAS  Google Scholar 

  79. Keslacy S, Tliba O, Baidouri H, Amrani Y (2007) Inhibition of tumor necrosis factor-α-inducible inflammatory genes by interferon-{gamma} is associated with altered nuclear factor-κB trans-activation and enhanced histone deacetylase activity. Mol Pharmacol 71: 609–618

    Article  PubMed  CAS  Google Scholar 

  80. Lee JH, Kaminski N, Dolganov G, Grunig G, Koth L, Solomon C, Erle DJ, Sheppard D (2001) Interleukin-13 induces dramatically different transcriptional programs in three human airway cell types. Am J Respir Cell Mol Biol 25: 474–485

    PubMed  CAS  Google Scholar 

  81. Hirst SJ, Hallsworth MP, Peng Q, Lee TH (2002) Selective induction of eotaxin release by interleukin-13 or interleukin-4 in human airway smooth muscle cells is synergistic with interleukin-1b and is mediated by the interleukin-4 receptor α-chain. Am J Respir Crit Care Med 165: 1161–1171

    PubMed  Google Scholar 

  82. Moore PE, Church TL, Chism DD, Panettieri RA, Shore SA (2002) IL-13 and IL-4 cause eotaxin release in human airway smooth muscle cells: a role for ERK. Am J Physiol 282: L847–L853

    CAS  Google Scholar 

  83. Baraldo S, Faffe DS, Moore PE, Whitehead T, Mckenna M, Silverman ES, Panettieri RA, Shore SA (2003) Interleukin-9 influences chemokine release in airway smooth muscle: role of ERK. Am J Physiol 284: L1093–L1102

    CAS  Google Scholar 

  84. Faffe DS, Whitehead T, Moore PE, Baraldo S, Flynt L, Bourgeois K, Panettieri RA, Shore SA (2003) IL-13 and IL-4 promote TARC release in human airway smooth muscle cells: role of IL-4 receptor genotype. Am J Physiol 285: L907–L914

    CAS  Google Scholar 

  85. Zuyderduyn S, Hiemstra PS, Rabe KF (2004) TGF-β differentially regulates TH2 cytokine-induced eotaxin and eotaxin-3 release by human airway smooth muscle cells. J Allergy Clin Immunol 114: 791–798

    Article  PubMed  CAS  Google Scholar 

  86. Gounni AS, Hamid Q, Rahman SM, Hoeck J, Yang J, Shan L (2004) IL-9-mediated induction of eotaxin1/CCL11 in human airway smooth muscle cells. J Immunol 173: 2771–2779

    PubMed  CAS  Google Scholar 

  87. Syed F, Panettieri R, Tliba O, Huang C, Li K, Bracht M, Amegadzie B, Griswold D, Li L, Amrani Y (2005) The effect of IL-13 and IL-13R130Q, a naturally occurring IL-13 polymorphism, on the gene expression of human airway smooth muscle cells. Respir Res 6: 9

    Article  PubMed  CAS  Google Scholar 

  88. Rahman MS, Yang J, Shan LY, Unruh H, Yang X, Halayko AJ, Gounni AS (2005) IL-17R activation of human airway smooth muscle cells induces CXCL-8 production via a transcriptional-dependent mechanism. Clini Immunol115: 268–276

    Article  CAS  Google Scholar 

  89. Wuyts WA, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE, Demedts MG, Verleden GM (2005) Interleukin-17-induced interleukin-8 release in human airway smooth muscle cells: Role for mitogen-activated kinases and nuclear factor-KB. J Heart Lung Transplant 24: 875–881

    Article  PubMed  Google Scholar 

  90. Henness S, Johnson CK, Ge Q, Armour CL, Hughes JM, Ammit AJ (2004) IL-17A augments TNF-[alpha]-induced IL-6 expression in airway smooth muscle by enhancing mRNA stability. J Allergy Clin Immunol 114: 958–964

    Article  PubMed  CAS  Google Scholar 

  91. Rahman MS, Yamasaki A, Yang J, Shan L, Halayko AJ, Gounni AS (2006) IL-17A Induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells: Role of MAPK (Erk1/2, JNK, and p38) pathways. J Immunol 177: 4064–4071

    PubMed  CAS  Google Scholar 

  92. Lajoie-Kadoch S, Joubert P, Letuve S, Halayko AJ, Martin JG, Soussi-Gounni A, Hamid Q (2006) TNF-α and IFN-y inversely modulate expression of the IL-17E receptor in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290: L1238–1246

    Article  PubMed  CAS  Google Scholar 

  93. Dragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS (2007) IL-17 enhances IL-1 β-mediated CXCL-8 release from human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292: L1023–1029

    Article  PubMed  CAS  Google Scholar 

  94. Elias JA, Wu Y, Zheng T, Panettiere R (1997) Cytokine- and virus-stimulated airway smooth muscle cells produce IL-11 and other IL-6-type cytokines. Am J Physiol Lung Cell Mol Physiol 273: L648–L655

    CAS  Google Scholar 

  95. Begueret H, Berger P, Vernejoux JM, Dubuisson L, Marthan R, Tunon-de-Lara JM (2007) Inflammation of bronchial smooth muscle in allergic asthma. Thorax 62: 8–15

    Article  PubMed  CAS  Google Scholar 

  96. Hallsworth MP, Soh CPC, Twort CHC, Lee TH, Hirst SJ (1998) Cultured human airway smooth muscle cells stimulated by interleukin-1β enhance eosinophil survival. Am J Respir Cell Mol Biol 19: 910–919

    PubMed  CAS  Google Scholar 

  97. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID (2002) Mast-Cell Infiltration of Airway Smooth Muscle in Asthma. N Engl J Med 346: 1699–1705

    Article  PubMed  Google Scholar 

  98. Slats AM, Janssen K, van Schadewijk A, van der Plas DT, Schot R, van den Aardweg JG, de Jongste JC, Hiemstra PS, Mauad T, Rabe KF, Sterk PJ (2007) Bronchial inflammation and airway responses to deep inspiration in asthma and COPD. Am J Respir Crit Care Med 176: 121–128

    Article  PubMed  Google Scholar 

  99. Sutcliffe A, Kaur D, Page S, Woodman L, Armour CL, Baraket M, Bradding P, Hughes JM, Brightling CE (2006) Mast cell migration to Th2 stimulated airway smooth muscle from asthmatics. Thorax 61: 657–662

    Article  PubMed  CAS  Google Scholar 

  100. Carroll NG, Mutavdzic S, James AL (2002) Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma. Thorax 57: 677–682

    Article  PubMed  CAS  Google Scholar 

  101. Thangam EB, Venkatesha RT, Zaidi AK, Jordan-Sciutto KL, Goncharov DA, Krymskaya VP, Amrani Y, Panettieri JRA, Ali H (2005) Airway smooth muscle cells enhance C3a-induced mast cell degranulation following cell-cell contact. FASEB J 19:798–800

    PubMed  CAS  Google Scholar 

  102. Vigano T, Habib A, Hernandez A, Bonazzi A, Boraschi D, Lebret M, Cassina E, Maclouf J, Sala A, Folco G (1997) Cyclooxygenase-2 and synthesis of PGE2 in human bronchial smooth muscle cells. Am J Respir Crit Care Med 155: 864–868

    PubMed  CAS  Google Scholar 

  103. Belvisi MG, Saunders MA, Haddad E, Hirst SJ, Yacoub MH, Barnes PJ, Mitchell JA (1997) Induction of cyclo-oxygenase-2 by cytokines in human cultured airway smooth muscle cells: novel inflammatory role of this cell type. Br J Pharmacol 120: 910–916

    Article  PubMed  CAS  Google Scholar 

  104. Fong CY, Pang L, Holland E, Knox AJ (2000) TGF-P1 stimulates IL-8 release, COX-2 expression, and PGE2 release in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 279: L201–L207

    PubMed  CAS  Google Scholar 

  105. Pang L, Knox AJ (1997) Effect of interleukin-1β, tumor necrosis factor-α and interferon-γ on the induction of cyclo-oxygenase-2 in cultured human airway smooth muscle cells. Br J Pharmacol 1997: 579–587

    Article  Google Scholar 

  106. Pang L, Knox AJ (1997) PGE2 release by bradykinin in human airway smooth muscle cells: involvement of cyclooxygenase-2 induction. Am J Physiol 273: L1132–L1140

    PubMed  CAS  Google Scholar 

  107. Chambers LS, Black JL, Ge Q, Carlin SM, Au WW, Poniris M, Thompson J, Johnson PR, Burgess JK (2003) PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasth-matic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285: L619–627

    PubMed  CAS  Google Scholar 

  108. Pascual RM, Carr EM, Seeds MC, Guo M, Panettieri RA, Jr., Peters SP, Penn RB (2006) Regulatory features of interleukin-1beta-mediated prostaglandin E2 synthesis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 290: L501–508

    Article  PubMed  CAS  Google Scholar 

  109. Johnson PRA, Armour CL, Carey D, Black JL (1995) Heparin and PGE2 inhibit DNA synthesis in human airway smooth muscle cells in culture. Am J Physiol 269: L514–519

    PubMed  CAS  Google Scholar 

  110. Pavord ID, Tattersfield AE (1995) Bronchoprotective role for endogenous prostaglandin E2. Lancet 345: 436–438

    Article  PubMed  CAS  Google Scholar 

  111. Panettieri RA, Lazaar AL, Pure E, Albelda SM (1995) Activation of cAMP-dependent pathways in human airway smooth muscle cells inhibits TNF-α-induced ICAM-1 and VCAM-1 expression and T lymphocyte adhesion. J Immunol154: 2358–2365

    PubMed  CAS  Google Scholar 

  112. Lazzeri N, Belvisi MG, Patel HJ, Yacoub MH, Chung KF, Mitchell JA (2001) Effects of prostaglandin E2 and cAMP elevating drugs on GM-CSF release by cultured human airway smooth muscle cells. Relevance to asthma therapy. Am J Respir Cell Mol Biol 24: 44–48

    CAS  Google Scholar 

  113. Lazzeri N, Belvisi MG, Patel HJ, Chung KF, Yacoub MH, Mitchell JA (2001) RANTES release by human airway smooth muscle: effects of prostaglandin E2 and fenoterol. Eur J Pharmacol 433: 231–235

    Article  PubMed  CAS  Google Scholar 

  114. Burgess JK, Blake AE, Boustany S, Johnson PRA, Armour CL, Black JL, Hunt NH, Hughes JM (2005) CD40 and OX40 ligand are increased on stimulated asthmatic airway smooth muscle. J Allergy Clin Immunol 115: 302–308

    Article  PubMed  CAS  Google Scholar 

  115. Burgess JK, Ge Q, Poniris MH, Boustany S, Twigg SM, Black JL, Johnson PRA (2006) Connective tissue growth factor and vascular endothelial growth factor from airway smooth muscle interact with the extracellular matrix. Am J Physiol Lung Cell Mol Physiol 290: L153–161

    Article  PubMed  CAS  Google Scholar 

  116. Ammit AJ, Lazaar AL, Irani C, O'Neill GM, Gordon ND, Amrani Y, Penn RB, Panettieri RA, Jr. (2002) Tumor necrosis factor-alpha -induced secretion of RANTES and interleukin-6 from human airway smooth muscle cells. Modulation by glucocorticoids and beta-agonists. Am J Respir Cell Mol Biol 26: 465–474

    PubMed  CAS  Google Scholar 

  117. Knox AJ, Corbett L, Stocks J, Holland E, Zhu YM, Pang L (2001) Human airway smooth muscle cells secrete vascular endothelial growth factor: up-regulation by bradykinin via a protein kinase C and prostanoid-dependent mechanism. FASEB J 15: 2480–2488

    Article  PubMed  CAS  Google Scholar 

  118. Stocks J, Bradbury D, Corbett L, Pang L, Knox AJ (2005) Cytokines upregulate vascular endothelial growth factor secretion by human airway smooth muscle cells: Role of endogenous prostanoids. FEBS Lett 579: 2551–2556

    Article  PubMed  CAS  Google Scholar 

  119. Bradbury D, Clarke D, Seedhouse C, Corbett L, Stocks J, Knox A (2005) Vascular endothelial growth factor induction by prostaglandin E2 in human airway smooth muscle cells is mediated by E prostanoid EP2/EP4 receptors and SP-1 transcription factor binding sites. J Biol Chem 280: 29993–30000

    Article  PubMed  CAS  Google Scholar 

  120. Gounni AS, Wellemans V, Yang J, Bellesort F, Kassiri K, Gangloff S, Guenounou M, Halayko AJ, Hamid Q, Lamkhioued B (2005) Human airway smooth muscle cells express the high affinity receptor for IgE (Fc{epsilon}RI): A critical role of Fc{epsilon}RI in human airway Smooth Muscle Cell Function. J Immunol 175: 2613–2621

    PubMed  CAS  Google Scholar 

  121. Hakonarson H, Carter C, Kim C, Grunstein MM (1999) Altered expression and action of the low affinity IgE receptor FceRII (CD23) in asthmatic airway smooth muscle. J Allergy Clin Immunol 104: 575–584

    Article  PubMed  CAS  Google Scholar 

  122. Hakonarson H, Grunstein MM (1998) Autologously up-regulated Fc receptor expression and action in airway smooth muscle mediates its altered responsiveness in the atopic asthmatic sensitized state. Proc Natl Acad Sci USA 95: 5257–5262

    Article  PubMed  CAS  Google Scholar 

  123. Belleau J, Gandhi R, McPherson H, Lew DB (2005) Research Upregulation of CD23 (FcepsilonRII) Expression in Human Airway Smooth Muscle Cells (huASMC) in Response to IL-4, GM-CSF, and IL-4/GM-CSF. Clin Mol Allergy 3: 6

    Article  PubMed  CAS  Google Scholar 

  124. Lazaar AL, Albelda SM, Pilewski JM, Brennan B, Pure E, Panettieri RA (1994) T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis. J Exp Med 180: 807–816

    Article  PubMed  CAS  Google Scholar 

  125. Lazaar AL, Reitz HE, Panettieri RA, Peters SP, Pure E (1997) Antigen receptor-stimulated peripheral blood and bronchoalveolar lavage-derived T cells induce MHC Class II and ICAM-1 expression on human airway smooth muscle. Am J Respir Cell Mol Biol 16: 38–45

    PubMed  CAS  Google Scholar 

  126. Hakonarson H, Kim C, Whelan R, Campbell D, Grunstein MM (2001) Bi-directional activation between human airway smooth muscle cells and T lymphocytes: role in induction of altered airway responsiveness. J Immunol 166: 293–303

    PubMed  CAS  Google Scholar 

  127. Lin W-N, Luo S-F, Lee C-W, Wang C-C, Wang J-S, Yang C-M (2007) Involvement of MAPKs and NF-κB in LPS-induced VCAM-1 expression in human tracheal smooth muscle cells. Cell Signal 19:1258–1267

    Article  PubMed  CAS  Google Scholar 

  128. Veler H, Hu A, Fatma S, Grunstein JS, DeStephan CM, Campbell D, Orange JS, Grunstein MM (2007) Superantigen presentation by airway smooth muscle to CD4 + T lymphocytes elicits reciprocal proasthmatic changes in airway function. J Immunol 178: 3627–3636

    PubMed  CAS  Google Scholar 

  129. Lazaar AL, Amrani Y, Hsu J, Panettieri RA, Fanslow WC, Albelda SM, Pure E (1998) CD40-mediated signal transduction in human airway smooth muscle. J Immunol 1998: 3120–3127

    Google Scholar 

  130. Burgess JK, Carlin S, Pack RA, Arndt GM, Au WW, Johnson PRA, Black JL, Hunt NH (2004) Detection and characterization of OX40 ligand expression in human airway smooth muscle cells A possible role in asthma? J Allergy Clin Immunol 113: 683–689

    Article  PubMed  CAS  Google Scholar 

  131. Hakonarson H, Whelan R, Leiter J, Kim C, Chen M, Campbell D, Grunstein MM (2002) T lymphocyte-mediated changes in airway smooth muscle responsiveness are attributed to induced autocrine release and actions of IL-5 and IL-1β. J Allergy Clin Immunol 110: 624–633

    Article  PubMed  CAS  Google Scholar 

  132. Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117: 979–987

    Article  PubMed  CAS  Google Scholar 

  133. Sukkar MB, Xie S, Khorasani NM, Kon OM, Stanbridge R, Issa R, Chung KF (2006) Tolllike receptor 2, 3, and 4 expression and function in human airway smooth muscle. J Allergy Clin Immunol 118: 641–648

    Article  PubMed  CAS  Google Scholar 

  134. Lee C-W, Chien C-S, Yang C-M (2004) Lipoteichoic acid-stimulated p42/p44 MAPK activation via Toll-like receptor 2 in tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 286: L921–930

    Article  PubMed  CAS  Google Scholar 

  135. Morris GE, Whyte MKB, Martin GF, Jose PJ, Dower SK, Sabroe I (2005) Agonists of Tolllike Receptors 2 and 4 Activate Airway Smooth Muscle via Mononuclear Leukocytes. Am J Respir Crit Care Med 171: 814–822

    Article  PubMed  Google Scholar 

  136. Shan X, Hu A, Veler H, Fatma S, Grunstein JS, Chuang S, Grunstein MM (2006) Regulation of Toll-like receptor 4-induced proasthmatic changes in airway smooth muscle function by opposing actions of ERK1/2 and p38 MAPK signaling. Am J Physiol Lung Cell Mol Physiol 291: L324–333

    Article  PubMed  CAS  Google Scholar 

  137. Morris GE, Parker LC, Ward JR, Jones EC, Whyte MKB, Brightling CE, Bradding P, Dower SK, Sabroe I (2006) Cooperative molecular and cellular networks regulate Toll-like receptor-dependent inflammatory responses. FASEB J 20: 2153–2155

    Article  PubMed  CAS  Google Scholar 

  138. Niimi K, Asano K, Shiraishi Y, Nakajima T, Wakaki M, Kagyo J, Takihara T, Suzuki Y, Fukunaga K, Shiomi T, Oguma T, Sayama K, Yamaguchi K, Natori Y, Matsumoto M, Seya T, Yamaya M, Ishizaka A (2007) TLR3-mediated synthesis and release of eotaxin-1/ CCL11 from human bronchial smooth muscle cells stimulated with double-stranded RNA. J Immunol 178: 489–495

    PubMed  CAS  Google Scholar 

  139. Oliver B, Johnston S, Baraket M, Burgess J, King N, Roth M, Lim S, Black J (2006) Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection. Respir Res 7: 71

    Article  PubMed  CAS  Google Scholar 

  140. Bachar O, Adner M, Uddman R, Cardell L-O (2004) Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-κB signaling pathways. European J Immunol 34: 1196–1207

    Article  CAS  Google Scholar 

  141. Grunstein MM, Hakonarson H, Whelan R, Yu Z, Grunstein JS, Chuang S (2001) Rhinovirus elicits proasthmatic changes in airway responsiveness independently of viral infection. J Allergy Clin Immunol 108: 997–1004

    Article  PubMed  CAS  Google Scholar 

  142. Moore PE, Cunningham G, Calder MM, DeMatteo AD, Jr., Peeples ME, Summar ML, Peebles RS, Jr. (2006) Respiratory syncytial virus infection reduces β2-adrenergic responses in human airway smooth muscle. Am J Respir Cell Mol Biol 35: 559–564

    Article  PubMed  CAS  Google Scholar 

  143. Fernandes DJ, Bonacci J V, Stewart AG (2006) Extracellular matrix, integrins, and mesen-chymal cell function in the airways. Curr Drug Targets 7: 567–577

    Article  PubMed  CAS  Google Scholar 

  144. Bergeron C, Boulet L-P (2006) Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation. Chest 129: 1068–1087

    Article  PubMed  CAS  Google Scholar 

  145. Huang JUN, Olivenstein RON, Taha R, Hamid Q, Ludwig M (1999) Enhanced proteoglycan deposition in the airway wall of atopic asthmatics. Am J Respir Crit Care Med 160: 725–729

    PubMed  CAS  Google Scholar 

  146. de Kluijver J, Schrumpf JA, Evertse CE, Sont JK, Roughley PJ, Rabe KF, Hiemstra PS, Mauad T, Sterk PJ (2005) Bronchial matrix and inflammation respond to inhaled steroids despite ongoing allergen exposure in asthma. Clin Exp Allergy 35: 1361–1369

    Article  PubMed  CAS  Google Scholar 

  147. Pini L, Hamid Q, Shannon J, Lemelin L, Olivenstein R, Ernst P, Lemiere C, Martin JG, Ludwig MS (2007) Differences in proteoglycan deposition in the airways of moderate and severe asthmatics. Eur Respir J 29: 71–77

    Article  PubMed  CAS  Google Scholar 

  148. Roche WR, Beasley R, Williams JH, Holgate ST (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1: 520–524

    Article  PubMed  CAS  Google Scholar 

  149. Altraja A, Laitinen A, Virtanen I, Kämpe M, Simonsson BG, Karlsson SE, Håkansson L, Venge P, Sillastu H, Laitinen LA (1996) Expression of laminins in the airways in various types of asthmatic patients: a morphometric study. Am J Respir Cell Mol Biol 15: 482–488

    PubMed  CAS  Google Scholar 

  150. Laitinen A, Altraja A, Kämpe M, Linden M, Virtanen I, Laitinen LA (1997) Tenascin is increased in airway basement membrane of asthmatics and decreased by an inhaled steroid. Am J Respir Crit Care Med 156: 951–958

    PubMed  CAS  Google Scholar 

  151. Hoshino M, Nakamura Y, Sim J, Shimojo J, Isogai S (1998) Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. J Allergy Clin Immunol 102: 783–788

    Article  PubMed  CAS  Google Scholar 

  152. Benayoun L, Letuve S, Druilhe A, Boczkowski J, Dombret M-C, Mechighel P, Megret J, Leseche GUY, Aubier M, Pretolani M (2001) Regulation of peroxisome proliferator-acti-vated receptor gamma expression in human asthmatic airways. Relationship with proliferation, apoptosis, and airway remodeling. Am J Respir Crit Care Med 164: 1487–1494

    PubMed  CAS  Google Scholar 

  153. Chakir J, Shannon J, Molet S, Fukakusa M, Elias J, Laviolette M, Boulet L-P, Hamid Q (2003) Airway remodeling-associated mediators in moderate to severe asthma: Effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol 111: 1293–1298

    Article  PubMed  CAS  Google Scholar 

  154. Amin K, Janson C, Seveus L, Miyazaki K, Virtanen I, Venge P (2005) Uncoordinated production of laminin-5 chains in airways epithelium of allergic asthmatics. Respir Res 6: 110

    Article  PubMed  CAS  Google Scholar 

  155. Bousquet J, Chanez P, Lacoste JY, Enander I, Venge P, Peterson C, Ahlstedt S, Michel F, Godard P (1991) Indirect evidence of bronchial inflammation assessed by titration of inflammatory mediators in BAL fluid of patients with asthma. J Allergy Clin Immunol 88: 649–660

    Article  PubMed  CAS  Google Scholar 

  156. Ohke M, Tada S, Nabe M, Matsuo K, Kataoka M, Harada M (2001) The role of fibronectin in bronchoalveolar lavage fluid of asthmatic patients. Acta Med Okayama 55: 83–89

    PubMed  CAS  Google Scholar 

  157. Panettieri RA, Jr., Tan EML, Ciocca V, Luttmann MA, Leonard TB, Hay DWP (1998) Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: Differential sensitivity to cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol 19: 453–461

    PubMed  CAS  Google Scholar 

  158. Johnson PRA, Black JL, Carlin S, Ge Q, Underwood PA (2000) The production of extracellular matrix proteins by human passively sensitised airway smooth muscle cells in culture. The effect of Beclomethasone. Am J Respir Crit Care Med 162: 2145–2151

    CAS  Google Scholar 

  159. Coutts A, Chen G, Stephens NL, Hirst SJ, Douglas D, Eichholtz T, Khalil N (2001) Release of biologically active TGF-β from airway smooth muscle cell induces autocrine synthesis of collagen. Am J Physiol 280: L999–L1008

    CAS  Google Scholar 

  160. Potter-Perigo S, Baker C, Tsoi C, Braun KR, Isenhath S, Altman GM, Altman LC, Wight TN (2004) Regulation of proteoglycan synthesis by leukotriene D4 and epidermal growth factor in bronchial smooth muscle cells. Am J Respir Cell Mol Biol 30: 101–108

    Article  PubMed  CAS  Google Scholar 

  161. Kazi AS, Lotfi S, Goncharova EA, Tliba O, Amrani Y, Krymskaya VP, Lazaar AL (2004) Vascular endothelial growth factor-induced secretion of fibronectin is ERK dependent. Am J Physiol Lung Cell Mol Physiol 286: L539–545

    Article  PubMed  CAS  Google Scholar 

  162. Xie S, Sukkar MB, Issa R, Oltmanns U, Nicholson AG, Chung KF (2005) Regulation of TGF-β;1-induced connective tissue growth factor expression in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 288: L68–76

    Article  PubMed  CAS  Google Scholar 

  163. Johnson PRA, Burgess JK, Ge Q, Poniris M, Boustany S, Twigg SM, Black JL (2006) Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle. Am J Respir Crit Care Med 173: 32–41

    Article  PubMed  CAS  Google Scholar 

  164. Chen G, Grotendorst G, Eichholtz T, Khalil N (2003) GM-CSF increases airway smooth muscle cell connective tissue expression by inducing TGF-β receptors. Am J Physiol Lung Cell Mol Physiol 284: L548–L556

    PubMed  CAS  Google Scholar 

  165. Johnson PRA, Burgess JK, Underwood PA, Au W, Poniris MH, Tamm M, Ge Q, Roth M, Black JL (2004) Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism. J Allergy Clin Immunol 113: 690–696

    Article  PubMed  CAS  Google Scholar 

  166. Wen F-Q, Liu X, Manda W, Terasaki Y, Kobayashi T, Abe S, Fang Q, Ertl R, Manouilova L, Rennard SI (2003) TH2 Cytokine-enhanced and TGF-β-enhanced vascular endothelial growth factor production by cultured human airway smooth muscle cells is attenuated by IFN-y and corticosteroids. J Allergy Clin Immunol 111: 1307–1318

    Article  PubMed  CAS  Google Scholar 

  167. Hirst SJ, Twort CHC, Lee TH (2000) Differential effects of extracellular matrix proteins on human airway smooth muscle cell proliferation and phenotype. Am J Respir Cell Mol Biol 23: 335–344

    PubMed  CAS  Google Scholar 

  168. Parameswaran K, Radford K, Zuo J, Janssen LJ, O'Byrne PM, Cox PG (2004) Extracellular matrix regulates human airway smooth muscle cell migration. Eur Respir J 24: 545–551

    Article  PubMed  CAS  Google Scholar 

  169. Nguyen TT-B, Ward JPT, Hirst SJ (2005) {beta}1-Integrins mediate enhancement of airway smooth muscle proliferation by collagen and fibronectin. Am J Respir Crit Care Med 171: 217–223

    Article  PubMed  Google Scholar 

  170. Peng Q, Lai D, Nguyen TT-B, Chan V, Matsuda T, Hirst SJ (2005) Multiple β1 integrins mediate enhancement of human airway smooth muscle cytokine secretion by fibronectin and Type I collagen. J Immunol 174: 2258–2264

    PubMed  CAS  Google Scholar 

  171. Dekkers BGJ, Schaafsma D, Nelemans SA, Zaagsma J, Meurs H (2007) Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function. Am J Physiol Lung Cell Mol Physiol 292: L1405–1413

    Article  PubMed  CAS  Google Scholar 

  172. Tran T, Fernandes DJ, Schuliga M, Harris T, Landells L, Stewart AG (2005) Stimulus-dependent glucocorticoid-resistance of GM-CSF production in human cultured airway smooth muscle. Br J Pharmacol 145: 123–131

    Article  PubMed  CAS  Google Scholar 

  173. Tran T, Ens-Blackie K, Rector ES, Stelmack GL, McNeill KD, Tarone G, Gerthoffer WT, Unruh H, Halayko AJ (2007) Laminin-binding integrin α7 is required for contractile phenotype expression by human airway myocytes. Am J Respir Cell Mol Biol 37: 668–680

    Article  PubMed  CAS  Google Scholar 

  174. Freyer AM, Johnson SR, Hall IP (2001) Effects of growth factors and extracellular matrix on survival of human airway smooth muscle cells. Am J Respir Cell Mol Biol 25: 569–576

    PubMed  CAS  Google Scholar 

  175. Lazaar AL, Plotnick MI, Kucich U, Crichton I, Lotfi S, Das SKP, Kane S, Rosenbloom J, Panettieri RA, Jr., Schechter NM, Pure E (2002) Mast cell chymase modifies cell-matrix interactions and inhibits mitogen-induced proliferation of human airway smooth muscle cells. J Immunol 169: 1014–1020

    PubMed  CAS  Google Scholar 

  176. Oltmanns U, Sukkar MB, Xie S, John M, Chung KF (2005) Induction of human airway smooth muscle apoptosis by neutrophils and neutrophil elastase. Am J Respir Cell Mol Biol 32: 334–341

    Article  PubMed  CAS  Google Scholar 

  177. Fahy J V, Kim KW, Liu J, Boushey HA (1995) Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol 95: 843–852

    Article  PubMed  CAS  Google Scholar 

  178. Jatakanon A, Uasuf C, Maziak W, Lim SAM, Chung KF, Barnes PJ (1999) Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 160: 1532–1539

    PubMed  CAS  Google Scholar 

  179. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160: 1001–1008

    PubMed  CAS  Google Scholar 

  180. Shapiro SD (2002) Proteinases in chronic obstructive pulmonary disease. Biochem Soc Trans 30: 98–102

    Article  PubMed  CAS  Google Scholar 

  181. Elshaw SR, Henderson N, Knox AJ, Watson SA, Buttle DJ, Johnson SR (2004) Matrix met-alloproteinase expression and activity in human airway smooth muscle cells. Br J Pharmacol 142: 1318–1324

    Article  PubMed  CAS  Google Scholar 

  182. Dahlen B, Shute J, Howarth P (1999) Immunohistochemical localisation of the matrix metal-loproteinases MMP-3 and MMP-9 within the airways in asthma. Thorax 54: 590–596

    Article  PubMed  CAS  Google Scholar 

  183. Kao-Chih Liang C-WLW-NLC-CLC-BWS-FLC-MY (2007) Interleukin-1? induces MMP-9 expression via p42/p44 MAPK, p38 MAPK, JNK, and nuclear factor-?B signaling pathways in human tracheal smooth muscle cells. J Cell Physiol 211: 759–770

    Article  PubMed  CAS  Google Scholar 

  184. Xie S, Issa R, Sukkar M, Oltmanns U, Bhavsar P, Papi A, Caramori G, Adcock I, Fan Chung KF (2005) Induction and regulation of matrix metalloproteinase-12 in human airway smooth muscle cells. Respir Res 6: 148

    Article  PubMed  CAS  Google Scholar 

  185. Foley SC, Mogas AK, Olivenstein R, Fiset PO, Chakir J, Bourbeau J, Ernst P, Lemiere C, Martin JG, Hamid Q (2007) Increased expression of ADAM33 and ADAM8 with disease progression in asthma. J Allergy Clin Immunol 119: 863–871

    Article  PubMed  CAS  Google Scholar 

  186. Lu D, Xie S, Sukkar MB, Lu X, Scully MF, Chung KF (2007) Inhibition of airway smooth muscle adhesion and migration by the disintegrin domain of ADAM-15. Am J Respir Cell Mol Biol 37: 494–500

    Article  PubMed  CAS  Google Scholar 

  187. Johnson S, Knox A (1999) Autocrine production of matrix metalloproteinase-2 is required for human airway smooth muscle proliferation. Am J Physiol 277: L1109 – L1117

    PubMed  CAS  Google Scholar 

  188. Henderson N, Markwick LJ, Elshaw SR, Freyer AM, Knox AJ, Johnson SR (2007) Collagen I and thrombin activate MMP-2 by MMP-14-dependent and -independent pathways: implications for airway smooth muscle migration. Am J Physiol Lung Cell Mol Physiol 292: L1030–1038

    Article  PubMed  CAS  Google Scholar 

  189. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-β1 release. Biochem J 322: 809–814

    PubMed  CAS  Google Scholar 

  190. Fowlkes JL, Enghild JJ, Suzuki K, Nagase H (1994) Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J Biol Chem 269: 25742–25746

    PubMed  CAS  Google Scholar 

  191. Noveral JP, Bhala A, Hintz RL, Grunstein MM, Cohen P (1994) Insulin-like growth factor axis in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 267: L761–765

    CAS  Google Scholar 

  192. Hasaneen NA, Zucker S, Cao J, Chiarelli C, Panettieri RA, Foda HD (2005) Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs. FASEB J 19: 1507–1509

    PubMed  CAS  Google Scholar 

  193. Hirst SJ, Walker TR, Chilvers ER (2000) Phenotypic diversity and molecular mechanisms of airway smooth muscle proliferation in asthma. Eur Respir J 16: 159–177

    Article  PubMed  CAS  Google Scholar 

  194. Ma X, Wang Y, Stephens NL (1998) Serum deprivation induces a unique hypercontractile phenotype of cultured smooth muscle cells. Am J Physiol 274: C1206–C1214

    PubMed  CAS  Google Scholar 

  195. Moir LM, Leung S-Y, Eynott PR, McVicker CG, Ward JPT, Chung KF, Hirst SJ (2003) Repeated allergen inhalation induces phenotypic modulation of smooth muscle in bronchioles of sensitized rats. Am J Physiol Lung Cell Mol Physiol 284: L148–159

    PubMed  CAS  Google Scholar 

  196. McVicker CG, Leung S-Y, Kanabar V, Moir LM, Mahn K, Chung KF, Hirst SJ (2007) Repeated allergen inhalation induces cytoskeletal remodeling in smooth muscle from rat bronchioles. Am J Respir Cell Mol Biol 36: 721–727

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sukkar, M.B., Chung, K.F. (2009). Airway Smooth Muscle Dysfunction in Asthma. In: Pawankar, R., Holgate, S.T., Rosenwasser, L.J. (eds) Allergy Frontiers: Classification and Pathomechanisms. Allergy Frontiers, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88315-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-88315-9_23

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-88314-2

  • Online ISBN: 978-4-431-88315-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics