Skip to main content

Epithelial Cell-Mesenchymal Interaction, Epithelial-Leukocyte Interaction and Epithelial Immune-Response Genes in Allergic Disease

  • Chapter
Allergy Frontiers: Classification and Pathomechanisms

Part of the book series: Allergy Frontiers ((ALLERGY,volume 2))

  • 858 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kay AB. Allergy and allergic diseases. Second of two parts. (2001) N Engl J Med 344: 1090–1013.

    Google Scholar 

  2. Takhar P, Corrigan CJ, Smurthwaite L, O'Connor BJ, Durham SR, Lee TH, Gould HJ. (2007) Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J Allergy Clin Immunol 119: 213–218.

    PubMed  CAS  Google Scholar 

  3. Selgrade MK, Lemanske RF Jr, Gilmour MI, Neas LM, Ward MD, Henneberger PK, Weissman DN, Hoppin JA, Dietert RR, Sly PD, Geller AM, Enright PL, Backus GS, Bromberg PA, Germolec DR, Yeatts KB. (2006) Induction of asthma and the environment: what we know and need to know. Environ Health Perspect 114: 615–619.

    PubMed  Google Scholar 

  4. Hammad H, Lambrecht BN. (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8: 193–204.

    PubMed  CAS  Google Scholar 

  5. Kraft M. (1999) The distal airways: Are they important in asthma? Eur Respir J 14:1403–417.

    PubMed  CAS  Google Scholar 

  6. Haley KJ, Sunday ME, Wiggs BR, Kozakewich HP, Reilly JJ, Mentzer SJ, Sugarbaker DJ, Doerschuk CM, Drazen JM. (1998) Inflammatory cell distribution within and along asthmatic airways. Am J Respir Crit Care Med 158:565–572.

    PubMed  CAS  Google Scholar 

  7. Vercelli D. (2008) Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol 8: 169–182.

    PubMed  CAS  Google Scholar 

  8. Marshall, D, Hardman, MJ, Nield, KM, Byrne, C. (2001) Differentially expressed late constituents of the epidermal cornified envelope. Proc Natl Acad Sci USA 98: 13031–13036.

    PubMed  CAS  Google Scholar 

  9. Palmer, CN, Irvine, AD, Terron-Kwiatkowski, A. et al. (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38: 441–446.

    PubMed  CAS  Google Scholar 

  10. Heyman M. (2005) Gut barrier dysfunction in food allergy. Eur J Gastroenterol Hepatol 17: 1279–1285.

    PubMed  Google Scholar 

  11. Balda MS, Matter K. (2000) Transmembrane proteins of tight junctions. Semin Cell Dev Biol 11: 281–289.

    PubMed  CAS  Google Scholar 

  12. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE. (2003) Tight junction proteins. Prog Biophys Mol Biol 81: 1–44.

    PubMed  CAS  Google Scholar 

  13. Roche WR, Montefort S, Baker J, Holgate ST. (1993) Cell adhesion molecules and the bronchial epithelium. Am Rev Respir Dis. 148(Pt 2): S79–82.

    PubMed  CAS  Google Scholar 

  14. Wan H, Winton HL, Soeller C et al. (1999) Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104: 123–133.

    PubMed  CAS  Google Scholar 

  15. Evans SM, Blyth DI, Wong T, Sanjar S, West MR. (2002) Decreased distribution of lung epithelial junction proteins after intratracheal antigen or lipopolysaccharide challenge: correlation with neutrophil influx and levels of BALF sE-cadherin. Am J Respir Cell Mol Biol 27: 446–454.

    PubMed  CAS  Google Scholar 

  16. Holgate ST. (2007) Epithelium dysfunction in asthma. Allergy Clin Immunol. 120: 1233–1244.

    CAS  Google Scholar 

  17. Xiao C, Field S, Puxeddu I, Sammut D, Haitchi H-M, Bedke N, Howarth P, Holgate ST, Monk P, Puddicombe SM, Davies DE. (2008) Disrupted tight junctions and epithelial susceptibility in asthma — protection by an epithelial-selective EGF Analogue. J Allergy Clin Immunol (in press).

    Google Scholar 

  18. Ilowite JS, Bennett WD, Sheetz MS, Groth ML, Nierman DM. (1989) Permeability of the bronchial mucosa to 99 mTc-DTPA in asthma. Am Rev Respir Dis. 139: 1139–1143.

    PubMed  CAS  Google Scholar 

  19. Tillie-Leblond I, Gosset P, Le BR et al. (2007) KGF improves alterations of lung permeability and bronchial epithelium in allergic rats. Eur Respir J 30: 31–39.

    PubMed  CAS  Google Scholar 

  20. Basuroy S, Seth A, Elias B, Naren AP, Rao R. (2006) MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide. Biochem J 393(Pt 1): 69–77.

    PubMed  CAS  Google Scholar 

  21. Farrell CL, Rex KL, Chen JN et al. (2002) The effects of keratinocyte growth factor in pre-clinical models of mucositis. Cell Prolif 35(Suppl 1): 78–85.

    PubMed  CAS  Google Scholar 

  22. Bruewer M, Samarin S, Nusrat A. (2006) Inflammatory bowel disease and the apical junc-tional complex. Ann N Y Acad Sci 1072: 242–252.

    PubMed  CAS  Google Scholar 

  23. Sinha A, Nightingale J, West KP, Berlanga-Acosta J, Playford RJ. (2003) Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proc-titis. N Engl J Med 349: 350–357.

    PubMed  CAS  Google Scholar 

  24. Farrell RJ. (2003) Epidermal growth factor for ulcerative colitis. N Engl J Med 349: 395–397.

    PubMed  Google Scholar 

  25. Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, Symington P, O'Toole S, Myint SH, Tyrrell DA, et al. (1995) Community study of role of viral infections in exacerbations of asthma in 9–11 year old children. BMJ 310: 1225–1229.

    PubMed  CAS  Google Scholar 

  26. Corne JM, Marshall C, Smith S, Schreiber J, Sanderson G, Holgate ST, Johnston SL. (2002) Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet 359: 831–834.

    PubMed  Google Scholar 

  27. Papadopoulos NG, Bates PJ, Bardin PG, Papi A, Leir SH, Fraenkel DJ, Meyer J, Lackie PM, Sanderson G, Holgate ST, Johnston SL. (2000) Rhinoviruses infect the lower airways. J Infect Dis 181:1875–1884.

    PubMed  CAS  Google Scholar 

  28. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, Holgate ST, Davies DE. (2005) Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 201: 937–947.

    PubMed  CAS  Google Scholar 

  29. Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW, Kebadze T, Mallia P, Stanciu LA, Parker HL, Slater L, Lewis-Antes A, Kon OM, Holgate ST, Davies DE, Kotenko SV, Papi A, Johnston SL. (2006) Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med 12: 1023–1026.

    PubMed  CAS  Google Scholar 

  30. Holgate ST. (2005) Exacerbations: the asthma paradox. Am J Respir Crit Care Med 72: 941–943.

    Google Scholar 

  31. Comhair SA, Ricci KS, Arroliga M, Lara AR, Dweik RA, Song W, Hazen SL, Bleecker ER, Busse WW, Chung KF, Gaston B, Hastie A, Hew M, Jarjour N, Moore W, Peters S, Teague WG, Wenzel SE, Erzurum SC. (2005) Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. Am J Respir Crit Care Med 172: 306–313.

    PubMed  Google Scholar 

  32. Qujeq D, Hidari B, Bijani K, Shirdel H. (2003) Glutathione peroxidase activity and serum selenium concentration in intrinsic asthmatic patients. Clin Chem Lab Med 41: 200–202.

    PubMed  CAS  Google Scholar 

  33. Misso NL, Thompson PJ. (2005) Oxidative stress and antioxidant deficiencies in asthma: potential modification by diet. Redox Rep 10: 247–255.

    PubMed  CAS  Google Scholar 

  34. Morrison D, Rahman I, MacNee W. (2006) Permeability, inflammation and oxidant status in airspace epithelium exposed to ozone. Respir Med 100: 2227–2234.

    PubMed  Google Scholar 

  35. Rojas-Martinez R, Perez-Padilla R, Olaiz-Fernandez G, Mendoza-Alvarado L, Moreno-Macias H, Fortoul T, McDonnell W, Loomis D, Romieu I. (2007) Lung function growth in children with long-term exposure to air pollutants in Mexico City. Am J Respir Crit Care Med 176: 377–384.

    PubMed  CAS  Google Scholar 

  36. Moshammer H, Bartonova A, Hanke W, van den Hazel P, Koppe JG, Krämer U, Ronchetti R, Sram RJ, Wallis M, Wallner P, Zuurbier M. (2006) Air pollution: a threat to the health of our children. Acta Paediatr (Suppl. 95): 93–105.

    Google Scholar 

  37. Ordoñez C, Ferrando R, Hyde DM, Wong HH, Fahy J V. (2000) Epithelial desquamation in asthma: artifact or pathology? Am J Respir Crit Care Med 162: 2324–2329.

    PubMed  Google Scholar 

  38. Montefort S, Roberts JA, Beasley R, Holgate ST, Roche WR. (1992) The site of disruption of the bronchial epithelium in asthmatic and non-asthmatic subjects. Thorax 47: 499–503

    PubMed  CAS  Google Scholar 

  39. Barbato A, Turato G, Baraldo S, Bazzan E, Calabrese F, Panizzolo C, Zanin ME, Zuin R, Maestrelli P, Fabbri LM, Saetta M. (2006) Epithelial damage and angiogenesis in the airways of children with asthma. Am J Respir Crit Care Med 174: 975–981.

    PubMed  Google Scholar 

  40. Shahana S, Björnsson E, Lúdvíksdóttir D, Janson C, Nettelbladt O, Venge P, Roomans GM; BHR-group. (2005) Ultrastructure of bronchial biopsies from patients with allergic and non-allergic asthma. Respir Med 99: 429–443.

    PubMed  CAS  Google Scholar 

  41. Knight DA, Holgate ST. (2003) The airway epithelium: structural and functional properties in health and disease. Respirology 8: 432–446.

    PubMed  Google Scholar 

  42. Fedorov IA, Wilson SJ, Davies DE, Holgate ST. (2005) Epithelial stress and structural remodelling in childhood asthma. Thorax 60: 389–394.

    PubMed  CAS  Google Scholar 

  43. Saglani S, Malmström K, Pelkonen AS, Malmberg LP, Lindahl H, Kajosaari M, Turpeinen M, Rogers AV, Payne DN, Bush A, Haahtela T, Mäkelä MJ, Jeffery PK. (2005) Airway remodeling and inflammation in symptomatic infants with reversible airflow obstruction. Am J Respir Crit Care Med 171: 722–727.

    PubMed  Google Scholar 

  44. Barbato A, Turato G, Baraldo S, Bazzan E, Calabrese F, Panizzolo C, Zanin ME, Zuin R, Maestrelli P, Fabbri LM, Saetta M. (2006) Epithelial damage and angiogenesis in the airways of children with asthma. Am J Respir Crit Care Med 174: 975–981.

    PubMed  Google Scholar 

  45. Puddicombe SM, Torres-Lozano C, Richter A, Bucchieri F, Lordan JL, Howarth PH, Vrugt B, Albers R, Djukanovic R, Holgate ST, Wilson SJ, Davies DE. (2003) Increased expression of p21(waf) cyclin-dependent kinase inhibitor in asthmatic bronchial epithelium. Am J Respir Cell Mol Biol 28: 61–68.

    PubMed  CAS  Google Scholar 

  46. Bucchieri F, Puddicombe SM, Lordan JL, Richter A, Buchanan D, Wilson SJ, Ward J, Zummo G, Howarth PH, Djukanović R, Holgate ST, Davies DE. (2002) Asthmatic bronchial epithelium is more susceptible to oxidant-induced apoptosis. Am J Respir Cell Mol Biol 27: 179–185.

    PubMed  CAS  Google Scholar 

  47. Kicic A, Sutanto EN, Stevens PT, Knight DA, Stick SM. (2006) Intrinsic biochemical and functional differences in bronchial epithelial cells of children with asthma. Am J Respir Crit Care Med 174: 1110–1118.

    PubMed  CAS  Google Scholar 

  48. Comhair SA, Xu W, Ghosh S, Thunnissen FB, Almasan A, Calhoun WJ, Janocha AJ, Zheng L, Hazen SL, Erzurum SC. (2005) Superoxide dismutase inactivation in pathophysiol-ogy of asthmatic airway remodeling and reactivity. Am J Pathol 166: 663–674.

    PubMed  CAS  Google Scholar 

  49. Truong-Tran AQ, Grosser D, Ruffin RE, Murgia C, Zalewski PD. (2003) Apoptosis in the normal and inflamed airway epithelium: role of zinc in epithelial protection and procaspase-3 regulation. Biochem Pharmacol 66: 1459–1468.

    PubMed  CAS  Google Scholar 

  50. Ordoñez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, Hotchkiss JA, Zhang Y, Novikov A, Dolganov G, Fahy JV. (2001) Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med 163: 517–523.

    PubMed  Google Scholar 

  51. Jeffery PK. (2000) Comparison of the structural and inflammatory features of COPD and asthma. Giles F. Filley Lecture. Chest 117(Suppl 1):251 S–60 S.

    CAS  Google Scholar 

  52. Whittaker L, Niu N, Temann UA, Stoddard A, Flavell RA, Ray A, Homer RJ, Cohn L. (2002) Interleukin-13 mediates a fundamental pathway for airway epithelial mucus induced by CD4 T cells and interleukin-9. Am J Respir Cell Mol Biol 27: 593–602

    PubMed  CAS  Google Scholar 

  53. Cohn L. (2006) Mucus in chronic airway diseases: sorting out the sticky details. J Clin Invest 116: 306–308.

    PubMed  CAS  Google Scholar 

  54. Thai P, Chen Y, Dolganov G, Wu R. (2005) Differential regulation of MUC5 AC/Muc5ac and hCLCA-1/mGob-5 expression in airway epithelium. Am J Respir Cell Mol Biol 33: 523–530.

    PubMed  CAS  Google Scholar 

  55. Long AJ, Sypek JP, Askew R, Fish SC, Mason LE, Williams CM, Goldman SJ.. (2006) Gob-5 contributes to goblet cell hyperplasia and modulates pulmonary tissue inflammation. Am J Respir Cell Mol Biol 35: 357–365.

    PubMed  CAS  Google Scholar 

  56. Puddicombe SM, Polosa R, Richter A, Krishna MT, Howarth PH, Holgate ST, Davies DE. (2000) Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J 14: 1362–1374.

    PubMed  CAS  Google Scholar 

  57. Hamilton LM, Puddicombe SM, Dearman RJ, Kimber I, Sandström T, Wallin A, Howarth PH, Holgate ST, Wilson SJ, Davies DE. (2005) Altered protein tyrosine phosphorylation in asthmatic bronchial epithelium. Eur Respir J 25: 978–985.

    PubMed  CAS  Google Scholar 

  58. Casalino-Matsuda SM, Monzón ME, Forteza RM. (2006) Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium. Am J Respir Cell Mol Biol 34: 581–591.

    PubMed  CAS  Google Scholar 

  59. Hamilton LM, Torres-Lozano C, Puddicombe SM, Richter A, Kimber I, Dearman RJ, Vrugt B, Aalbers R, Holgate ST, Djukanović R, Wilson SJ, Davies DE. (2003) The role of the epidermal growth factor receptor in sustaining neutrophil inflammation in severe asthma. Clin Exp Allergy 33: 233–240.

    PubMed  CAS  Google Scholar 

  60. Holgate ST, Polosa R. (2008) Treatment strategies for allergy and asthma. Nat Rev Immunol 8: 218–230.

    PubMed  CAS  Google Scholar 

  61. Ballantyne SJ, Barlow JL, Jolin HE, Nath P, Williams AS, Chung KF, Sturton G, Wong SH, McKenzie AN. (2007) Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol 120: 1324–1331.

    PubMed  CAS  Google Scholar 

  62. Hayakawa H, Hayakawa M, Kume A, Tominaga S. (2007) Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem 282: 26369–26380.

    PubMed  CAS  Google Scholar 

  63. Doherty T, Broide D. (2007) Cytokines and growth factors in airway remodeling in asthma. Curr Opin Immunol 19: 676–680.

    PubMed  CAS  Google Scholar 

  64. Boxall C, Holgate ST, Davies DE. (2006) The contribution of transforming growth factor-beta and epidermal growth factor signalling to airway remodelling in chronic asthma. Eur Respir J 27: 208–229.

    PubMed  CAS  Google Scholar 

  65. Leung SY, Niimi A, Noble A, Oates T, Williams AS, Medicherla S, Protter AA, Chung KF. (2006) Effect of transforming growth factor-beta receptor I kinase inhibitor 2,4-disubstituted pteridine (SD-208) in chronic allergic airway inflammation and remodeling. J Pharmacol Exp Ther 319: 586–594.

    PubMed  CAS  Google Scholar 

  66. Brewster CE, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR. (1990) Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 3: 507–511.

    PubMed  CAS  Google Scholar 

  67. Zhang S, Smartt H, Holgate ST, Roche WR. (1999) Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodeling in asthma. Lab Invest 79: 395–405.

    PubMed  CAS  Google Scholar 

  68. Choe MM, Sporn PH, Swartz MA. (2006) Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model. Am J Respir Cell Mol Biol 35: 306–313.

    PubMed  CAS  Google Scholar 

  69. Wicks J, Haitchi HM, Holgate ST, Davies DE, Powell RM. (2006) Enhanced upregulation of smooth muscle related transcripts by TGF beta2 in asthmatic (myo) fibroblasts. Thorax 61: 313–319.

    PubMed  CAS  Google Scholar 

  70. Lemanske RF Jr, Jackson DJ, Gangnon RE, Evans MD, Li Z, Shult PA, Kirk CJ, Reisdorf E, Roberg KA, Anderson EL, Carlson-Dakes KT, Adler KJ, Gilbertson-White S, Pappas TE, Dasilva DF, Tisler CJ, Gern JE. (2005) Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J Allergy Clin Immunol 116: 571–577.

    PubMed  Google Scholar 

  71. Illi S, von Mutius E, Lau S, Niggemann B, Grüber C, Wahn U Multicentre Allergy Study (MAS) group (2006). Perennial allergen sensitisation early in life and chronic asthma in children: a birth cohort study. Lancet 368: 763–770. Erratum in: Lancet 368: 1154.

    PubMed  Google Scholar 

  72. Davies DE, Wicks J, Powell RM, Puddicombe SM, Holgate ST. (2003) Airway remodeling in asthma: new insights. J Allergy Clin Immunol 111: 215–225.

    PubMed  CAS  Google Scholar 

  73. Holgate ST, Holloway J, Wilson S, Howarth PH, Haitchi HM, Babu S, Davies DE. (2006) Understanding the pathophysiology of severe asthma to generate new therapeutic opportunities. J Allergy Clin Immunol 117: 496–506.

    PubMed  CAS  Google Scholar 

  74. James AL, Wenzel S. (2007) Clinical relevance of airway remodelling in airway diseases. Eur Respir J. 30: 134–155.

    PubMed  CAS  Google Scholar 

  75. Tran T, Halayko AJ. (2007) Extracellular matrix and airway smooth muscle interactions: a target for modulating airway wall remodelling and hyperresponsiveness? Can J Physiol Pharmacol 85: 666–671.

    PubMed  CAS  Google Scholar 

  76. Bumbacea D, Campbell D, Nguyen L, Carr D, Barnes PJ, Robinson D, Chung KF. (2004) Parameters associated with persistent airflow obstruction in chronic severe asthma. Eur Respir J 24: 122–128.

    PubMed  CAS  Google Scholar 

  77. Jain N, Covar RA, Gleason MC, Newell JD Jr, Gelfand EW, Spahn JD. (2005) Quantitative computed tomography detects peripheral airway disease in asthmatic children. Pediatr Pulmonol 40: 211–218.

    PubMed  Google Scholar 

  78. Shaw TJ, Wakely SL, Peebles CR, Mehta RL, Turner JM, Wilson SJ, Howarth PH. (2004) Endobronchial ultrasound to assess airway wall thickening: validation in vitro and in vivo. Eur Respir J 23: 813–817.

    PubMed  CAS  Google Scholar 

  79. Paganin F, Séneterre E, Chanez P, Daurés JP, Bruel JM, Michel FB, Bousquet J. (1996) Computed tomography of the lungs in asthma: influence of disease severity and etiology. Am J Respir Crit Care Med 153: 110–114.

    PubMed  CAS  Google Scholar 

  80. Pini L, Hamid Q, Shannon J, Lemelin L, Olivenstein R, Ernst P, Lemière C, Martin JG, Ludwig MS. (2007) Differences in proteoglycan deposition in the airways of moderate and severe asthmatics. Eur Respir J 29: 71–77.

    PubMed  CAS  Google Scholar 

  81. Kariyawasam HH, Aizen M, Barkans J, Robinson DS, Kay AB. (2007) Remodeling and airway hyperresponsiveness but not cellular inflammation persist after allergen challenge in asthma. Am J Respir Crit Care Med 175: 896–904.

    PubMed  CAS  Google Scholar 

  82. Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, Torrey D, Pandit S, McKenny J, Braunschweiger K, Walsh A, Liu Z, Hayward B, Folz C, Manning SP, Bawa A, Saracino L, Thackston M, Benchekroun Y, Capparell N, Wang M, Adair R, Feng Y, Dubois J, FitzGerald MG, Huang H, Gibson R, Allen KM, Pedan A, Danzig MR, Umland SP, Egan RW, Cuss FM, Rorke S, Clough JB, Holloway JW, Holgate ST, Keith TP. (2002) Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418: 426–430.

    PubMed  Google Scholar 

  83. Blakey J, Halapi E, Bjornsdottir US, Wheatley A, Kristinsson S, Upmanyu R, Stefansson K, Hakonarson H, Hall IP. (2005) Contribution of ADAM33 polymorphisms to the population risk of asthma. Thorax 60: 274–276.

    PubMed  CAS  Google Scholar 

  84. Jongepier H, Boezen HM, Dijkstra A, Howard TD, Vonk JM, Koppelman GH, Zheng SL, Meyers DA, Bleecker ER, Postma DS. (2004) Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin Exp Allergy 34: 757–760.

    PubMed  CAS  Google Scholar 

  85. van Diemen CC, Postma DS, Vonk JM, Bruinenberg M, Schouten JP, Boezen HM. (2005) A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am J Respir Crit Care Med 172: 329–333.

    PubMed  Google Scholar 

  86. Powell RM, Wicks J, Holloway JW, Holgate ST, Davies DE. (2004) The splicing and fate of ADAM33 transcripts in primary human airways fibroblasts. Am J Respir Cell Mol Biol 31: 13–21.

    PubMed  CAS  Google Scholar 

  87. Lee JY, Park SW, Chang HK, Kim HY, Rhim T, Lee JH, Jang AS, Koh ES, Park CS. (2006) A disintegrin and metalloproteinase 33 protein in patients with asthma: relevance to airflow limitation. Am J Respir Crit Care Med 173: 729–735.

    PubMed  CAS  Google Scholar 

  88. Simpson A, Maniatis N, Jury F, Cakebread JA, Lowe LA, Holgate ST, Woodcock A, Ollier WE, Collins A, Custovic A, Holloway JW, John SL. (2005) Polymorphisms in a disintegrin and metalloprotease 33 (ADAM33) predict impaired early-life lung function. Am J Respir Crit Care Med 172: 55–60.

    PubMed  Google Scholar 

  89. Chen C, Huang X, Sheppard D. (2006) ADAM33 is not essential for growth and development and does not modulate allergic asthma in mice. Mol Cell Biol 26: 6950–6956.

    PubMed  CAS  Google Scholar 

  90. Haitchi HM, Powell RM, Shaw TJ, Howarth PH, Wilson SJ, Wilson DI, Holgate ST, Davies DE. (2005) ADAM33 expression in asthmatic airways and human embryonic lungs. Am J Respir Crit Care Med 171: 958–965.

    PubMed  Google Scholar 

  91. Holgate ST, Yang Y, Haitchi HM, Powell RM, Holloway JW, Yoshisue H, Pang Y Y, Cakebread J, Davies DE. (2006) The genetics of asthma: ADAM33 as an example of a susceptibility gene. Proc Am Thorac Soc 3: 440–443.

    PubMed  CAS  Google Scholar 

  92. Walters EH, Soltani A, Reid DW, Ward C. (2008) Vascular remodelling in asthma.Curr Opin Allergy Clin Immunol 8: 39–43.

    PubMed  CAS  Google Scholar 

  93. Hasaneen NA, Zucker S, Lin RZ, Vaday GG, Panettieri RA, Foda HD. (2007) Angiogenesis is induced by airway smooth muscle strain. Am J Physiol Lung Cell Mol Physiol 293: L1059–1068.

    PubMed  CAS  Google Scholar 

  94. Simcock DE, Kanabar V, Clarke GW, O'Connor BJ, Lee TH, Hirst SJ (2007) Proangiogenic activity in bronchoalveolar lavage fluid from patients with asthma. Am J Respir Crit Care Med 176: 146–153.

    PubMed  CAS  Google Scholar 

  95. Puxeddu I, Pang Y, Harvey A, Haitchi HM, Nicholas B,Yoshisue H, Ribatti D, Clough G, Powell RM, Murphy G, Hanley N, Wilson DI, Howarth PH, Holgate ST, Davies DE. (2008). The soluble form of ADAM33 promotes angiogenesis: implications for airway remodelling in asthma. J Allergy Clin Immunol (in press).

    Google Scholar 

  96. Regamey N, Ochs M, Hilliard TN, Muhlfeld C, Cornish N, Fleming L, Saglani S, Alton EW, Bush A, Jeffery PK, Davies JC. (2008) Increased Airway Smooth Muscle Mass in Children with Asthma, Cystic Fibrosis and Bronchiectasis. Am J Respir Crit Care Med Jan 24; [Epub ahead of print].

    Google Scholar 

  97. Kim ES, Kim SH, Kim KW, Park JW, Kim YS, Sohn MH, Kim KE. (2007) Basement membrane thickening and clinical features of children with asthma. Allergy 62: 635–640.

    PubMed  CAS  Google Scholar 

  98. Jenkins HA, Cool C, Szefler SJ, Covar R, Brugman S, Gelfand EW, Spahn JD. (2003) Histopathology of severe childhood asthma: a case series. Chest 124: 32–41.

    PubMed  Google Scholar 

  99. Kim N, Vu TH. (2006) Parabronchial smooth muscle cells and alveolar myofibroblasts in lung development. Birth Defects Res C Embryo Today 78: 80–89.

    PubMed  CAS  Google Scholar 

  100. Selgrade MK, Plopper CG, Gilmour MI, Conolly RB, Foos BS. (2008) Assessing the health effects and risks associated with children's inhalation exposures—asthma and allergy. J Toxicol Environ Health A 71: 196–207.

    PubMed  CAS  Google Scholar 

  101. Holgate ST. (2008) The Airway Epithelium is Central to the Pathogenesis of Asthma. Allergol Int. 57: 1–10.

    PubMed  CAS  Google Scholar 

  102. Ray RJ, Furlonger C, Williams DE, Paige CJ. (1996) Characterization of thymic stromal-derived lymphopoietin (TSLP) in murine B cell development in vitro. Eur J Immunol 26: 10–16.

    PubMed  CAS  Google Scholar 

  103. Isaksen DE, Baumann H, Trobridge PA, Farr AG, Levin SD, Ziegler SF. (1999) Requirement for stat5 in thympic stromal lymphopoietin-mediated signal transduction. J Immunol 163: 5971–5977.

    PubMed  CAS  Google Scholar 

  104. Liu YJ. (2006) Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 203: 269–273.

    PubMed  Google Scholar 

  105. Watanabe N, Hanabuchi S, Marloie-Provost MA, Antonenko S, Liu YJ, Soumelis V. (2005) Human TSLP promotes CD40 ligand-induced IL-12 production by myeloid dendritic cells but maintains their Th2 priming potential. Blood 105: 4749–4751.

    PubMed  CAS  Google Scholar 

  106. Ito T, Wang TH, Duramad O, Hori T, Delespesse GH, Watanabe N, Qin FX, Yao Z, Cao W, Liu YJ. (2005) TSLP-activated dendritic cells induce an inflammatory T helper type 2 cells response through OX40 ligand. J Exp Med 202: 1213–1223.

    PubMed  CAS  Google Scholar 

  107. Al-Shami A, Spolski R, Kelly J, Keane-Myers A, Leonard WJ. (2005) A role for TSLP in the development of inflammation in an asthma model. J Exp Med 202: 829–839.

    PubMed  CAS  Google Scholar 

  108. Ying S, O'Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, Robinson D, Zhang G, Zhao J, Lee TH, Corrigan C. (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174: 8183–8190.

    PubMed  CAS  Google Scholar 

  109. Zhou B, Comeau MR, De Smedt T, Liggitt HD, Dahl ME, Lewis DB, Gyarmati D, Aye T, Campbell DJ, Ziegler SF. (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6: 1047–1053.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holgate, S.T. (2009). Epithelial Cell-Mesenchymal Interaction, Epithelial-Leukocyte Interaction and Epithelial Immune-Response Genes in Allergic Disease. In: Pawankar, R., Holgate, S.T., Rosenwasser, L.J. (eds) Allergy Frontiers: Classification and Pathomechanisms. Allergy Frontiers, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88315-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-88315-9_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-88314-2

  • Online ISBN: 978-4-431-88315-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics