Skip to main content

Molecular Structures of Krüppel-like Factors

  • Chapter
The Biology of Krüppel-like Factors

Abstract

The Krüppel-like factor (KLF) family regulates several biological processes, such as self-renewal, proliferation, differentiation, development, and tissue-selectively restricted events of a cell at the transcriptional level. The KLF family has a highly conserved array of three C2H2-type zinc fingers with similarity to Drosophila Krüppel at the C-terminus, comprising a GC-rich DNA-binding domain, to mediate activation and/or repression of transcription. In contrast, the N-terminal regions of KLFs contain several distinct domains that are required for binding to chromatin-associated proteins, such as CtBP or Sin3A. We describe the structure—function aspects of KLFs, with a primary focus on the DNA-binding domains and the protein-binding domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chen C, Sun X, Guo P, Dong XY, Sethi P, Cheng X, Zhou J, Ling J, Simons JW, Lingrel JB, Dong JT (2005) Human Krüppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells. J Biol Chem 280:41553–41561

    Article  PubMed  CAS  Google Scholar 

  • Chinnadurai G (2002) CtBP, an unconventional transcriptional co-repressor in development and oncogenesis. Mol Cell 9:213–224

    Article  PubMed  CAS  Google Scholar 

  • Criqui-Filipe P, Ducret C, Maira S-M, Wasylyk B (1999) Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation. EMBO J 18:3392–3403

    Article  PubMed  CAS  Google Scholar 

  • Du JX, Yun CC, Bialkowska A, Yang VW (2007) Protein inhibitor of activated STAT1 interacts with and up-regulates activities of the pro-proliferative transcription factor Krüppel-like factor 5. J Biol Chem 282:4782–4793

    Article  PubMed  CAS  Google Scholar 

  • Elrod-Erickson M, Rould MA, Nekludova L, Pabo CO (1996) Zif268 protein-DNA complex refined at 1.6Å: a model system for understanding zinc finger-DNA interactions. Structure 4:1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Elrod-Erickson M, Benson TE, Pabo CO (1998) High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. Structure 6:451–464

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S (2001) Three Classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58:625–635

    Article  PubMed  CAS  Google Scholar 

  • Izmailova ES, Wieczorek E, Perkins EB, Zehner ZE (1999) A GC-box is required for expression of the human vimentin gene. Gene 235:69–75

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH. (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360

    Article  PubMed  Google Scholar 

  • Kaczynski J, Zhang J-S, Ellenrieder V, Conley A, Duenes T, Kester H, van der Burg B, Urrutia R (2001) The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1. J Biol Chem 276:36749–36756

    Article  PubMed  CAS  Google Scholar 

  • Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Krüppel-like transcription factors. Genome Biol 4:206

    Article  PubMed  Google Scholar 

  • Lomberk G, Urrutia R (2005) The family feud: turning off SP1 by Sp1-like KLF proteins. Biochem J 392:1–11

    Article  PubMed  CAS  Google Scholar 

  • Macias MJ, Wiesner S, Sudol M (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513:30–37

    Article  PubMed  CAS  Google Scholar 

  • Matsumura T, Suzuki T, Aizawa K, Munemasa Y, Muto S, Horikoshi M, Nagai R (2005) The deacetylase HDAC1 negatively regulates the cardiovascular transcription factor Krüppel-like factor 5 through direct interaction. J Biol Chem 230:12123–12129

    Google Scholar 

  • Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114:1253–1263

    PubMed  CAS  Google Scholar 

  • Miyamoto S, Suzuki T, Muto S, Aizawa K, Kimura A, Mizuno Y, Nagino T, Imai Y, Adachi N, Horikoshi M, Nagai R (2003) Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol Cell Biol 23:8528–8541

    Article  PubMed  CAS  Google Scholar 

  • Munemasa Y, Suzuki T, Aizawa K, Miyamoto S, Imai Y, Matsumura T, Horikoshi M, Nagai R (2008) Promoter region-specific histone incorporation by the novel histone chaperone ANP32B and DNA-binding factor KLF5. Mol Cell Biol 28:1171–1181

    Article  PubMed  CAS  Google Scholar 

  • Nardini M, Spano S, Cericola C, Pesce A, Massaro A, Corda D, Bolognesi M (2003) CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J 22:3122–3130

    Article  PubMed  CAS  Google Scholar 

  • Nielsen SJ, Præstegaard M, Jørgensen HF, Clark BFC (1998) Different Sp1 family members differentially affect transcription from the human elongation factor 1 A-1 gene promoter. Biochem J 333:511–517

    PubMed  CAS  Google Scholar 

  • Nomura M, Uda-Tochio H, Murai K, Mori N, Nishimura Y (2005) The neural repressor NRSF/ REST binds the PAH1 domain of the Sin3 co-repressor by using its distinct short hydrophobic helix. J Mol Biol 354:903–915

    Article  PubMed  CAS  Google Scholar 

  • Pandya K, Townes TM (2002) Basic residues within the Krüppel zinc finger DNA binding domains are the critical nuclear localization determinants of EKLF/KLF-1. J Biol Chem 277:16304–16312

    Article  PubMed  CAS  Google Scholar 

  • Philipsen S, Suske G (1999) A tale of three fingers: the family of mammalian SP/XKLF transcription factors. Nucleic Acids Res 27:2991–3000

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M (1988) How eukaryotic transcriptional activators work. Nature 335:683–689

    Article  PubMed  CAS  Google Scholar 

  • Sahu SC, Swanson KA, Kang RS, Huang K, Brubaker K, Ratcliff K, Radhakrishnan I (2008) Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcrip-tional co-repressor. J Mol Biol 375:144–1456

    Article  Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 92:10467–10471

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Sawada J, Sui G, Affarel B, Whetstine JR, Lan F, Ogawa H, Luke MP, Nakatani Y, Shi Y (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422:735–738

    Article  PubMed  CAS  Google Scholar 

  • Silverstein RA, Ekwall K (2005) Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 47:1–17

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Nishi T, Nagino T, Sasaki K, Aizawa K, Kada N, Sawaki D, Munemasa Y, Matsumura T, Muto S, Sata M, Miyagawa K, Horikoshi M, Nagai R (2007) Functional interaction between the transcription factor Krüppel-like factor 5 and Poly(ADP-ribose) polymerase-1 in cardiovascular apoptosis. J Biol Chem 282:9895–9901

    Article  PubMed  CAS  Google Scholar 

  • Swanson KA, Knoepfler PS, Huang K, Kang RS, Cowley SM, Laherty CD, Eisenman RN, Radhakrishnan I (2004) HBP1 and Mad1 repressors bind the Sin3 co-repressor PAH2 domain with opposite helical orientations. Nat Struct Mol Biol 11:738–746

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Crossley M (1998) Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators. EMBO J 17:5129–5140

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Crossley M (2001) The CtBP family: enigmatic and enzymatic transcriptional co-repressors. BioEssays 23:683–690

    Article  PubMed  CAS  Google Scholar 

  • van Vliet J, Turner J, Crossley M (2000) Human Krüppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 28:1955–1962

    Article  PubMed  Google Scholar 

  • Wolfe SA, Nekludova L, Pabo CO (1999) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212

    Article  Google Scholar 

  • Zhang JS, Moncrieffe MC, Kaczynski J, Ellenrieder V, Prendergast FG, Urrutia R (2001) A conserved α-helical motif mediates the interaction of Sp1-like transcriptional repressors with the co-repressor mSin3A. Mol Cell Biol 21:5041–5049

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Nagashima, T., Hayashi, F., Umehara, T., Yokoyama, S. (2009). Molecular Structures of Krüppel-like Factors. In: Nagai, R., Friedman, S.L., Kasuga, M. (eds) The Biology of Krüppel-like Factors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87775-2_2

Download citation

Publish with us

Policies and ethics