Skip to main content

The Gradient Paradigm: A Conceptual and Analytical Framework for Landscape Ecology

  • Chapter
Spatial Complexity, Informatics, and Wildlife Conservation

Abstract

Landscape ecology deals fundamentally with how, when, and why patterns of environmental factors influence the distribution of organisms and ecological processes, and reciprocally, how the actions of organisms and ecological processes influence ecological patterns (Urban et al. 1991; Turner 1989). The landscape ecologist's goal is to determine where and when spatial and temporal heterogeneity matter, and how they influence processes. A fundamental issue in this effort revolves around the choices a researcher makes about how to depict and measure heterogeneity (Turner 1989; Wiens 1989). Indeed, observed patterns and their apparent relationships with response variables often depend on the scale that is chosen for observation and the rules that are adopted for defining and measuring variables (Wiens 1989; Wu and Hobbs 2000; Wu and Hobbs 2004). Success in understanding pattern-process relationships hinges on accurately characterizing heterogeneity in a manner that is relevant to the organism or process under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Baker WL, Cai Y (1992) The r.le programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landsc Ecol 7:291–302

    Article  Google Scholar 

  • Barbato G, Carneiro K, Cuppini D, Garnaes J, Gori G, Hughes G, Jensen CP, Jorgensen JF, Jusko O, Livi S, McQuoid H, Nielsen L, Picotto GB, Wilening G (1995) Scanning tunnelling microscopy methods for the characterization of roughness and micro hardness measurements. Synthesis report for research contract with the European Union under its programme for applied metrology. European Commission Catalogue number: CDNA-16145 EN-C Brussels Luxemburg

    Google Scholar 

  • Barnsely MF, Devaney RL, Mandelbrot BB, Petigen H, Saupe D, Voss RF (1988) The science of fractal images. Springer, New York

    Google Scholar 

  • Bradshaw GA, Spies TA (1992) Characterizing canopy gap structure in forests using wavelet analysis. J Ecol 80:205–215

    Article  Google Scholar 

  • Cho E, Chon T (2006) Application of wavelet analysis to ecological data. Ecol Informat 1:229–233

    Article  Google Scholar 

  • Chui CK (1992) An introduction to wavelets. Academic, San Diego, CA

    Google Scholar 

  • Clements FE (1916) The nature and structure of the climax. J Ecol 24:252–284

    Google Scholar 

  • Cohen A (1995) Wavelets and multiscale signal processing. Chapman & Hall, London

    Google Scholar 

  • Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    CAS  PubMed  Google Scholar 

  • Cushman SA, McGarigal K (2004) Hierarchical analysis of forest bird species-environment relationships in the Oregon Coast Range. Ecological Applications. 14(4):1090–1105.

    Article  Google Scholar 

  • Cushman SA, McKenzie D, Peterson DL, Littell J, McKelvey KS (2007) Research agenda for integrated landscape modelling. USDA For. Serv. General Technical Report RMRS-GTR-194.

    Google Scholar 

  • Dutilleul P (1993) Modifying the t-test for assessing the correlation between two spatial processes. Biometrics 49:305–314

    Article  Google Scholar 

  • Evans JS, Hudak AT (2007) A multiscale curvature algorithm for classifying discrete return lidar in forested environments. IEEE Transactions on Geoscience and Remote Sensing, 45:1029–1038

    Article  Google Scholar 

  • Evans JS, Cushman SA (2009) Gradient modeling of conifer species using random forests. Landscape Ecology 24:673–683.

    Article  Google Scholar 

  • Ewe HT, Au WC, Shin RT, Kong JA (1993) Classification of SAR images using a fractal approach. Proceedings of Progress in Electromagnetic Research Symposium (PIERS) Los Angeles

    Google Scholar 

  • Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174:805–816

    Article  PubMed  Google Scholar 

  • Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol14:483–496

    Article  Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torr Bot Club 53:7–26

    Article  Google Scholar 

  • Guthrie KA, Sheppard L (2001) Overcoming biases and misconceptions in ecological studies. J Roy Stat Soc Stat Soc 164:141–154

    Article  Google Scholar 

  • He HS, DeZonia BE, Mladenoff DJ (2000) An aggregation index (AI) to quantify spatial patterns of landscapes. Landsc Ecol 15:591–601

    Article  Google Scholar 

  • Holderegger R, Wagner HH (2006) A brief guide to landscape genetics. Landsc Ecol 21:793–796

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quantitative Biol 22:415–427

    Google Scholar 

  • Jelinski DE, Wu J (1996) The modifiable areal unit problem and implications for landscape ecology. Landsc Ecol 11:129–140

    Article  Google Scholar 

  • Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71.

    Article  Google Scholar 

  • Kahane JP, Lemarie PG (1995) Fourier series and wavelets.Studies in the Development of Modern Mathematics, vol 3. Gordon and Research Publishers

    Google Scholar 

  • Kaiser G (1994) A friendly guide to wavelets. Birkhauser

    Google Scholar 

  • Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, New York

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: the combination of landscape ecology and population genetics. Trends in Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier's algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Manning AD, Lindenmayer B, Nix HA (2004) Continua and umwelt: novel perspectives on viewing landscapes. Oikos 104:621–628

    Article  Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation. Ecol Appl 12:335–345

    Article  Google Scholar 

  • McGarigal K, Cushman SA (2005) The gradient concept of landscape structure. In: Wiens J, Moss M (eds) Issues and Perspectives in Landscape Ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: spatial analysis program for quantifying landscape structure. USDA For Serv Gen Tech Rep PNW-GTR-351

    Google Scholar 

  • McGarigal K, Cushman SA, Stafford S (2000) Multivariate statistics for wildlife and ecology research. Springer, New York

    Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst www.umass.edu/landeco/research/fragstats/fragstats.html

  • McIntyre S, Barrett GW (1992) Habitat variegation, an alternative to fragmentation. Conservat Biol 4:197–202

    Google Scholar 

  • McGarigal K, Cushman SA (2005) The gradient concept of landscape structure. In: Wiens J, Moss M (eds) Issues and Perspectives in Landscape Ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Michels E, Cottenie K, Neys L, DeGalas K, Coppin P, DeMeester L (2001) Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modeling of the effective geographical distance. Mol Ecol 10:1929–1938

    Article  CAS  PubMed  Google Scholar 

  • Moore ID, Gryson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrolog Process 5:3–30

    Article  Google Scholar 

  • Murphy MA, Evans JS, Cushman SA, Storfer A (2008) Representing genetic variation as continuous surfaces: An approach for identifying spatial dependency in landscape genetic studies. Ecography 31:685–697

    Article  Google Scholar 

  • Ohmann JL, Gregory MJ (2002) Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, USA. Canadian Journal of Forest Resources 32:725–741.

    Article  Google Scholar 

  • O'Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton, NJ

    Google Scholar 

  • O'Neill RV, Johnson AR, King AW (1989) A hierarchical framework for the analysis of scale. Landsc Ecol 3:193–205

    Article  Google Scholar 

  • Openshaw S (1984) The modifiable areal unit problem. Norwich: Geo Books. ISBN 0-86094-134-5

    Google Scholar 

  • Pentland AP (1984) Fractal-based description of natural scenes. IEEE Trans Patt Anal Mach Intel 6:661–674

    Article  Google Scholar 

  • Peterson DL, Parker VT (1998) Ecological scale: theory and applications. Columbia University Press, New York

    Google Scholar 

  • Plotnick RE, Gardner RH, O'Neill RV (1993) Lacunarity indices as measures of landscape texture. Landsc Ecol 8:201–211

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Proctor MF, McLellan BN, Strobeck C, Barclay RMR (2005) Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerability by small populations. Proceedings of the Royal Society B: Biological Sciences 272:2409–2416

    Article  PubMed  Google Scholar 

  • Rehfeldt GE, Crookston NL, Warwell MV, Evans JS (2006) Empirical analyses of plant-climate relationships for the western United States. Int J Plant Sci 167:1123–1150

    Article  Google Scholar 

  • Robinson WS (1950) Ecological correlations and the behavior of individuals. Am Socio Rev 15:351–357

    Article  Google Scholar 

  • Spear SF, Peterson CR, Matacq M, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • SPIP (2001) The scanning probe image processor. Image Metrology APS, Lyngby, Denmark

    Google Scholar 

  • Schneider DC (1994) Quantitative ecology: spatial and temporal scaling. Academic, San Diego, CA.

    Google Scholar 

  • Stout KJ, Sullivan PJ, Dong WP, Mainsah E, Lou N, Mathia T, Zahouani H (1994) The development of methods for the characterization of roughness on three dimensions. Publication no EUR 15178 EN of the Commission of the European Communities, Luxembourg

    Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2006) Putting the ‘landscape’ in landscape genetics. Heredity 2006:1–15

    Google Scholar 

  • ter Braak CJF (1988) Partial canonical correspondence analysis. In: Bock HH (ed.) Classification and related methods of data analysis. North-Holland, Amsterdam

    Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annl Rev Ecol System 20:171–197

    Article  Google Scholar 

  • Turner MG, O'Neill RV, Gardner RH, Milne BT (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landsc Ecol 3:153–162

    Article  Google Scholar 

  • Urban DL, O'Neill RV, Shugart HH (1991) Landscape ecology. BioScience 37:119–127

    Article  Google Scholar 

  • Urban DL, Goslee S, Pierce K, Lookingbill T (2002) Extending community ecology to landscapes. Ecoscience 9:200–212

    Google Scholar 

  • Villarrubia JS (1997) Algorithms for scanned probe microscope, image simulation, surface reconstruction and tip estimation. J Nat Inst Stand Tech 102:435–454

    Google Scholar 

  • Webster R, Oliver M (2001) Geostatistics for environmental scientists. Wiley, Chichester

    Google Scholar 

  • Whittaker RH (1967) Gradient analysis of vegetation. Biol Rev 42:207–264

    Article  CAS  PubMed  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wiens JA (2001) Understanding the problem of scale in experimental ecology. In: Gardner RH, Kemp WM, Kennedy VS, Petersen JE (eds) Scaling relations in experimental ecology. Columbia University Press, New York

    Google Scholar 

  • Wiens JA, Stenseth NC, Van Horne B, Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66:369–380

    Article  Google Scholar 

  • Wood CH, Skole D (1998) Linking satellite, census, and survey data to study deforestation in the Brazilian Amazon. In: Liverman D, Moran EF, Rindfuss RR, Stern PC (eds) People and pixels: linking remote sensing and social science. National Academy Press, Washington, DC

    Google Scholar 

  • Wright S (1921) Correlation and causation. J Agric Res 20:557–585

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  Google Scholar 

  • Wright S (1960) Path coefficients and path regressions: alternative or complementary concepts? Biometrics 16:189–202

    Article  Google Scholar 

  • Wu J (2007) Scale and scaling: a cross-disciplinary perspective. In: Wu J, Hobbs RJ (eds) Key topics in landscape ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landsc Ecol 17:355–365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Cushman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Cushman, S.A., Gutzweiler, K., Evans, J.S., McGarigal, K. (2010). The Gradient Paradigm: A Conceptual and Analytical Framework for Landscape Ecology. In: Cushman, S.A., Huettmann, F. (eds) Spatial Complexity, Informatics, and Wildlife Conservation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87771-4_5

Download citation

Publish with us

Policies and ethics