Skip to main content

Plant Functional Genomics Based on Integration of Metabolomics and Transcriptomics: Toward Plant Systems Biology

  • Conference paper

By taking the advantages of development of sequencing technology, the genome sequences of several plant species have been revealed: these include Arabidopsis thaliana [1], Oryza sativa (rice) [2], Populus trichocarpa (poplar) [3], Vitis vinifera (grapevine) [4], and Sorghum bicolor (sorghum) (http://www.phytozome.net/ sorghum). However, even in Arabidopsis, which is most extensively investigated in terms of gene function, only half the genes have been functionally annotated based on sequence similarity to known genes, and the function of only about 11% has been confirmed with evidence [5]. Therefore, the identification of the function of unknown genes is currently a major subject in plant genomics. Analyses of the changes in plants in which specific genes are either overexpressed (gain-of-function experiment) or knocked out (loss-of-function experiment) are generally used for decoding the functions of genes. Systematic analyses of the transcriptome and metabolome, in particular, correlating the expression pattern of genes with the accumulation pattern of metabolites, could be an excellent way for deducing the functions of genes, even if these engineered plants do not show apparent phe-notypic alternation [6–9].

In plants, a large number of genes involved in primary and secondary metabolism are present to form multigene families, for example, in Arabidopsis, 30 terpene synthase genes, 272 cytochrome P450 genes, 107 glycosyltransferase genes, and 130 ABC protein genes [10]. These genes are believed to be involved in the synthesis, modification, degradation, and/or transport of particular metabolites in plants. Compared with the model plant Arabidopsis, the situation is more complicated in the case of other plants, even if their genome sequences are available, because of the lack of feasible genetic resources for functional investigation such as large mutant panels and full-length cDNA collections. The integration of metabolic profiles with gene expression profiles can provide hints for the identification of functions of unknown metabolic genes, regardless of model or nonmodel plants. With the recent advances of sophisticated bioinformatics tools and analytical technology, the systems biology approach becomes more realistic to solve biological problems. In this chapter, the functional genomics study of combining transcriptome and metab-olome is discussed, leading to the development of plant systems biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature (Lond) 408:796–815.

    Article  Google Scholar 

  2. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature (Lond) 436:793–800.

    Article  Google Scholar 

  3. Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R. R., Bhalerao, R. P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G. L., Cooper, D., Coutinho, P. M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Dejardin, A., Depamphilis, C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., Henrissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N., Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjarvi, J., Karlsson, J., Kelleher, C., Kirkpatrick, R., Kirst, M., Kohler, A., Kalluri, U., Larimer, F., Leebens-Mack, J., Leple, J. C., Locascio, P., Lou, Y., Lucas, S., Martin, F., Montanini, B., Napoli, C., Nelson, D. R., Nelson, C., Nieminen, K., Nilsson, O., Pereda, V., Peter, G., Philippe, R., Pilate, G., Poliakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K., Rouze, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A., Sterky, F., Terry, A., Tsai, C. J., Uberbacher, E., Unneberg, P., et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–604.

    Article  PubMed  CAS  Google Scholar 

  4. Jaillon, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyere, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pe, M. E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A. F., Weissenbach, J., Quetier, F. & Wincker, P.(2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature (Lond) 449:463–7.

    Article  CAS  Google Scholar 

  5. The Multinational Arabidopsis Steering Commitee (2007) The Multinational Coordinated Arabidopsis thaliana Functional Genomics Project. Annual Report 2007.

    Google Scholar 

  6. Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B. J., Mendes, P., Roessner-Tunali, U., Beale, M. H., Trethewey, R. N., Lange, B. M., Wurtele, E. S. & Sumner, L. W. (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–25.

    Article  PubMed  CAS  Google Scholar 

  7. Oksman-Caldentey, K. M. & Saito, K. (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–9.

    Article  PubMed  CAS  Google Scholar 

  8. Schauer, N. & Fernie, A. R. (2006) Plant metabolomics: towards biological function and mechanism. Trends Plant Sci 11:508–16.

    Article  PubMed  CAS  Google Scholar 

  9. Saito, K., Hirai, M. & Yonekura-Sakakibara, K. (2008) Decoding genes by coexpression network and metabolomics: ‘majority report by precogs.’ Trends Plant Sci 13:36–43.

    Article  PubMed  CAS  Google Scholar 

  10. D'Auria, J. C. & Gershenzon, J. (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–16.

    Article  PubMed  Google Scholar 

  11. Tohge, T., Nishiyama, Y., Hirai, M. Y., Yano, M., Nakajima, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D. B., Kitayama, M., Noji, M., Yamazaki, M. & Saito, K. (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–35.

    Article  PubMed  CAS  Google Scholar 

  12. Luo, J., Nishiyama, Y., Fuell, C., Taguchi, G., Elliott, K., Hill, L., Tanaka, Y., Kitayama, M., Yamazaki, M., Bailey, P., Parr, A., Michael, A. J., Saito, K. & Martin, C. (2007) Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J 50:678–95.

    Article  PubMed  CAS  Google Scholar 

  13. Wangwattana, B., Koyama, Y., Nishiyama, Y., Kitayama, M., Yamazaki, M. & Saito, K. (2008) Characterization of PAP1-upregulated glutathione S-transferase genes in Arabidopsis thaliana. Plant Biotechnol 25:191–6.

    CAS  Google Scholar 

  14. Yonekura-Sakakibara, K., Tohge, T., Niida, R. & Saito, K. (2007) Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcrip-tome coexpression analysis and reverse genetics. J Biol Chem 282:14932–41.

    Article  PubMed  CAS  Google Scholar 

  15. Obayashi, T., Kinoshita, K., Nakai, K., Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K. & Ohta, H. (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35:D863–9.

    Article  PubMed  CAS  Google Scholar 

  16. Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K. et al. (2008) The AtGenExpress hormone- and chemical-treatment data set: Experimental design, data evaluation, model data analysis, and data access. Plant J 55:526–42.

    Article  PubMed  CAS  Google Scholar 

  17. Tohge, T., Yonekura-Sakakibara, K., Niida, R., Watanabe-Takahashi, A. & Saito, K. (2007) Phytochemical genomics in Arabidopsis thaliana: a case study for functional identification of flavonoid biosynthesis genes. Pure Appl Chem 79:811–23.

    Article  CAS  Google Scholar 

  18. Yano, M., Kanaya, S., Altaf-UI-Amin, M., Kurokawa, K., Hirai, M. Y. & Saito, K. (2006) Integrated data mining of transcriptome and metabolome based on BL-SOM. J Comput Aid Chem 7:125–36.

    Article  Google Scholar 

  19. Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T. & Saito, K. (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10.

    Article  PubMed  CAS  Google Scholar 

  20. Hirai, M. Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D. B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J. & Saito, K. (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280:25590–5.

    Article  PubMed  CAS  Google Scholar 

  21. Hirai, M. Y., Sugiyama, K., Sawada, Y., Tohge, T., Obayashi, T., Suzuki, A., Araki, R., Sakurai, N., Suzuki, H., Aoki, K., Goda, H., Nishizawa, O. I., Shibata, D. & Saito, K. (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glu-cosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–83.

    Article  PubMed  CAS  Google Scholar 

  22. Kusano, M., Fukushima, A., Arita, M., Jonsson, P., Moritz, T., Kobayashi, M., Hayashi, N., Tohge, T. & Saito, K. (2007) Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Syst Biol 1:53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

Saito, K. (2009). Plant Functional Genomics Based on Integration of Metabolomics and Transcriptomics: Toward Plant Systems Biology. In: Nakanishi, S., Kageyama, R., Watanabe, D. (eds) Systems Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87704-2_14

Download citation

Publish with us

Policies and ethics